Bài 13 trang 108 SGK Đại số và Giải tích 11

Chứng minh rằng:

Đề bài

Chứng minh rằng nếu các số \({a^2},{b^2},{c^2}\) lập thành một cấp số cộng \((abc ≠ 0)\) thì các số \(\displaystyle{1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) cũng lập thành một cấp số cộng.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của CSC: Nếu ba số x, y, z là ba số liên tiếp của CSC thì: \(x + z = 2y\).

Lời giải chi tiết

Ta phải chứng minh: \(\displaystyle {1 \over {b + c}} - {1 \over {c + a}} = {1 \over {c + a}} - {1 \over {a + b}} \)

Thật vậy,

\(\eqalign{
& {1 \over {b + c}} - {1 \over {c + a}} = {1 \over {c + a}} - {1 \over {a + b}} \cr
& \Leftrightarrow {{c + a - b - c} \over {(c + a)(b + c)}} = {{a + b - c - a} \over {(c + a)(a + b)}} \cr
& \Leftrightarrow {{a - b} \over {b + c}} = {{b - c} \over {a + b}}\cr & \Leftrightarrow \left( {a - b} \right)\left( {a + b} \right) = \left( {b + c} \right)\left( {b - c} \right)\cr &\Leftrightarrow {a^2} - {b^2} = {b^2} - {c^2}\cr} \)

(đúng do \(a^2, b^2,c^2\) lập thành CSC)

Vậy (1) đúng nên \(\displaystyle{1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) là cấp số cộng.

 HocTot.XYZ

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close