Bài 2 trang 98 SGK Hình học 10

Cho tam giác ABC có hai điểm M,N sao cho

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) có hai điểm \(M,N\)  sao cho 

\(\left\{ \matrix{
\overrightarrow {AM} = \alpha \overrightarrow {AB} \hfill \cr 
\overrightarrow {AN} = \beta \overrightarrow {AC} \hfill \cr} \right.\)

LG a

Hãy vẽ \(\displaystyle M, N\) khi \(\displaystyle \alpha  = {2 \over 3};\beta  =  - {2 \over 3}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \overrightarrow {AM} = {2 \over 3}\overrightarrow {AB} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AM} \uparrow \uparrow \overrightarrow {AB} \hfill \cr 
AM = {2 \over 3}AB \hfill \cr} \right. \cr 
& \overrightarrow {AN} = - {2 \over 3}\overrightarrow {AC} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AN} \uparrow \downarrow \overrightarrow {AC} \hfill \cr 
AN = {2 \over 3}AC \hfill \cr} \right. \cr} \)

Vậy \(M\) thuộc đoạn \(AB\) sao cho \(AM = {2 \over 3}AB \) và \(N\) thuộc tia đối của tia \(AC\) sao cho \(AN = {2 \over 3}AC .\)

LG b

Hãy tìm mối liên hệ giữa \(α, β\) để \(MN//BC\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \beta \overrightarrow {AC} - \alpha \overrightarrow {AB} \\
\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \\
MN//BC \Leftrightarrow \dfrac{\beta }{1} = \dfrac{{ - \alpha }}{{ - 1}} \Leftrightarrow \beta = \alpha
\end{array}\)

Vậy \(MN//BC \Leftrightarrow \beta  = \alpha .\)

HocTot.XYZ

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close