Bài 5 trang 99 SGK Hình học 10

Chứng minh rẳng trong mọi tam giác ABC ta đều có:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng trong mọi tam giác ABC ta đều có:

LG a

\(a = b \cos C + c \cos B\)

Phương pháp giải:

Sử dụng các hệ thức lượng trong tam giác biến đổi vế phải bằng vế trái và kết luận.

Lời giải chi tiết:

 Trong tam giác \(ABC\), theo định lí cosin ta có:

\(\left\{ \matrix{
\cos C = {{{a^2} + {b^2} - {c^2}} \over {2ab}} \hfill \cr 
\cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} \hfill \cr} \right.\) 

Ta có:

\(\eqalign{
& b\cos C + c\cos B \cr&= b.{{{a^2} + {b^2} - {c^2}} \over {2ab}} + c.{{{a^2} + {c^2} - {b^2}} \over {2ac}} \cr } \)

\(\begin{array}{l}
= \dfrac{{{a^2} + {b^2} - {c^2}}}{{2a}} + \dfrac{{{a^2} + {c^2} - {b^2}}}{{2a}}\\
= \dfrac{{{a^2} + {b^2} - {c^2} + {a^2} + {c^2} - {b^2}}}{{2a}}\\
= \dfrac{{2{a^2}}}{{2a}} = a
\end{array}\)

Vậy \(a = b \cos C + c \cos B\)

LG b

\(\sin A = \sin B.\cos C + \sin C.\cos B\)

Lời giải chi tiết:

Trong tam giác \(ABC\) , theo định lí sin:

\(\eqalign{
& {a \over {\sin A}} = {b \over {{\mathop{\rm sinB}\nolimits} }} = {c \over {\sin C}} = 2R \cr 
& \Rightarrow \sin A = {a \over {2R}},\cr&\;\;\;\;\;\sin B = {b \over {2R}},\cr&\;\;\;\;\;\sin C = {c \over {2R}} \cr} \)

Ta có:

\(\eqalign{
& \sin B\cos C + \sin C\cos B \cr 
& = {b \over {2R}}.{{{a^2} + {b^2} - {c^2}} \over {2ab}} + {c \over {2R}}.{{{a^2} + {c^2} - {b^2}} \over {2ac}} \cr } \)

\(\begin{array}{l}
= \dfrac{1}{{2R}}.\dfrac{{{a^2} + {b^2} - {c^2}}}{{2a}} + \dfrac{1}{{2R}}.\dfrac{{{a^2} + {c^2} - {b^2}}}{{2a}}\\
= \dfrac{1}{{2R}}\left( {\dfrac{{{a^2} + {b^2} - {c^2}}}{{2a}} + \dfrac{{{a^2} + {c^2} - {b^2}}}{{2a}}} \right)\\
= \dfrac{1}{{2R}}.\dfrac{{2{a^2}}}{{2a}} = \dfrac{a}{{2R}} = \sin A
\end{array}\)

\( \Rightarrow \) đpcm.

Cách khác:

\(\begin{array}{l}
A + B + C = {180^0}\\
\Rightarrow A = {180^0} - \left( {B + C} \right)\\
\Rightarrow \sin A = \sin \left[ {{{180}^0} - \left( {B + C} \right)} \right]\\
\Leftrightarrow \sin A = \sin \left( {B + C} \right)\\
= \sin B\cos C + \sin C\cos B\\
\Rightarrow dpcm
\end{array}\)

LG c

\(h_a= 2R.\sin B\sin C.\)

Lời giải chi tiết:

Ta lại có: \(\displaystyle a.{h_a} = 2S \Rightarrow {h_a} = {{2S} \over a}\)

\(\displaystyle S = {{abc} \over {4R}} \Rightarrow {h_a}  = \frac{{2.\frac{{abc}}{{4R}}}}{a} = {{bc} \over {2R}}(2)\)

Mà 

\(\displaystyle \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R \) \(\displaystyle \Rightarrow \left\{ \begin{array}{l}
b = 2R\sin B\\
c = 2R\sin C
\end{array} \right.\)

thay vào (2) ta được:

\(\displaystyle {h_a} = {{2R{\mathop{\rm \sin B}\nolimits} .2R\sin C} \over {2R}}\)\(\displaystyle \Rightarrow {h_a} = 2R\sin B\sin C\)

Cách khác:

\(\displaystyle \begin{array}{l}
\dfrac{b}{{\sin B}} = 2R \Rightarrow b = 2R\sin B\\
\Rightarrow 2R\sin B\sin C = b\sin C\\
= \dfrac{{2.\dfrac{1}{2}ab\sin C}}{a} = \dfrac{{2S}}{a} = \dfrac{{a{h_a}}}{a} = {h_a}\\
\Rightarrow dpcm
\end{array}\)

HocTot.XYZ

  • Bài 6 trang 99 SGK Hình học 10

    Giải bài 6 trang 99 SGK Hình học 10. Cho các điểm A(2, 3); B(9, 4); M(5, y); P(x, 2)

  • Bài 7 trang 99 SGK Hình học 10

    Giải bài 7 trang 99 SGK Hình học 10. Cho tam giác ABC với H là trực tâm. Biết phương trình của đường thẳng AB, BH và AH lần lượt là: 4x + y – 12 = 0, 5x – 4y – 15 = 0 và 2x + 2y – 9 = 0

  • Bài 8 trang 99 SGK Hình học 10

    Giải bài 8 trang 99 SGK Hình học 10. Lập phương trình đường tròn có tâm nằm trên đường thẳng

  • Bài 9 trang 99 SGK Hình học 10

    Giải bài 9 trang 99 SGK Hình học 10. Qua tiêu điểm của elip dựng đường thẳng song song với Oy và cắt elip tại hai điểm M và N. Tính độ dài đoạn thẳng MN.

  • Bài 4 trang 99 SGK Hình học 10

    Giải bài 4 trang 99 SGK Hình học 10. Cho tam giác ABC đều có cạnh bằng 6cm. Một điểm M nằm trên cạnh BC sao cho BM = 2cm

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close