Bài 8 trang 62 SGK Hình học 10

Cho tam giác ABC. Chứng minh rằng:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\). Chứng minh rằng:

LG a

Góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)

Phương pháp giải:

do \(0^0< A<180^0\) nên \(A\) nhọn khi và chỉ khi \(cosA >0\)

Lời giải chi tiết:

Theo hệ quả định lí cosin: \({\mathop{\rm cosA}\nolimits}  = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\).

Khi đó:

\({a^2} < {b^2} + {c^2} \Leftrightarrow {b^2} + {c^2} - {a^2} > 0\)

Mà \(2bc > 0\) nên \(\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} > 0\)

\( \Leftrightarrow \cos A > 0\)

\(\Leftrightarrow A\) là góc nhọn.

Vậy góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)

LG b

Góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)

Phương pháp giải:

do \(0^0< A<180^0\) nên \(A\) tù khi và chỉ khi \(cosA <0\)

Lời giải chi tiết:

\({a^2} > {b^2} + {c^2} \Leftrightarrow {b^2} + {c^2} - {a^2} < 0 \)

Mà \(2bc > 0\) nên \(\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} < 0\)

\(\Leftrightarrow \cos A < 0\)

\(\Leftrightarrow A\) là góc tù.

Vậy góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)

LG c

Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\)

Phương pháp giải:

do \(0^0< A<180^0\) nên \(A\) vuông khi và chỉ khi \(cosA =0\)

Lời giải chi tiết:

Theo định lí Py-ta-go thì: \({a^2} = {b^2} + {c^2}\)

\(\Leftrightarrow \) góc \(A\) là góc vuông.

Cách trình bày khác:

Góc A vuông \( \Leftrightarrow \cos A = \cos {90^0} = 0 \)

\(\Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = 0\) \( \Leftrightarrow {b^2} + {c^2} - {a^2} = 0 \) \(\Leftrightarrow {b^2} + {c^2} = {a^2}\)

HocTot.XYZ

  • Bài 9 trang 62 SGK Hình học 10

    Giải bài 9 trang 62 SGK Hình học 10. Cho tam giác ANC có góc A = 600, BC = 6. Tính bán kính đường tròn ngoại tiếp tam giác đó.

  • Bài 10 trang 62 SGK Hình học 10

    Giải bài 10 trang 62 SGK Hình học 10. Cho tam giác ABC có a = 12, b = 16, c = 20. Tính diện tích S tam giác, chiều cao ha, các bán kính R, r của các đường tròn ngoại tiếp...

  • Bài 11 trang 62 SGK Hình học 10

    Giải bài 11 trang 62 SGK Hình học 10. Trong tập hợp các tam giác có hai cạnh là a và b. Tìm tam giác có diện tích lớn nhất.

  • Bài 1 trang 63 SGK Hình học 10

    Giải bài 1 trang 63 SGK Hình học 10. Trong các đẳng thức sau đây, đẳng thức nào đúng?

  • Bài 2 trang 63 SGK Hình học 10

    Giải bài 2 trang 63 SGK Hình học 10. Cho α và β là hai góc khác nhau và bù nhau. Trong các đẳng thức sau đây, đẳng thức nào sai?

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close