Câu hỏi 4 trang 159 SGK Đại số và Giải tích 11

Áp dụng các công thức trong Định lí 3, hãy tính đạo hàm của các hàm số...

Đề bài

Áp dụng các công thức trong Định lí 3, hãy tính đạo hàm của các hàm số \(y = 5{x^3} - 2{x^5}\); \(y =  - {x^3}\sqrt x \).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các công thức tính đạo hàm hàm \(y = {x^n}\) và hàm \(y = \sqrt x \)

Lời giải chi tiết

\({\left( 1 \right){\rm{ }}y' = {\rm{ }}(5{x^3}\; - {\rm{ }}2{x^5})' = {\rm{ }}(5{x^3})'{\rm{ }} - {\rm{ }}(2{x^5}\;)'}\)

\({ = {\rm{ }}(5'.{x^3}\; + {\rm{ }}5({x^3}\;)') - (2'.{x^5}\; + {\rm{ }}2.({x^5})')}\)

\({ = {\rm{ }}(0.{x^3}\; + {\rm{ }}5.3{x^2}) - (0.{x^5}\; + {\rm{ }}2.5{x^4})}\)

\({ = {\rm{ }}(0{\rm{ }} + {\rm{ }}15{x^2}) - (0{\rm{ }} + {\rm{ }}10{x^4})}\)

\({ = {\rm{ }}15{x^2}\; - {\rm{ }}10{x^4}}\)

\({\left( 2 \right){\rm{ }}y' = ( - {x^3}\sqrt x )'}\)

\({ = {\rm{ }}( - {x^3}\;)'.\sqrt x {\rm{ }} + {\rm{ }}( - {x^3}\;).\left( {\sqrt x } \right)'}\)

\({ = {\rm{ }} - 3{x^2}.\sqrt x {\rm{ }} - {\rm{ }}{x^3}\;.\frac{1}{{2\sqrt x }}}\)

 HocTot.XYZ

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí

close