• Lý thuyết Dãy số

    1. Định nghĩa dãy số

    Xem lời giải
  • Câu hỏi mở đầu trang 52

    Một công ty tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu là 240 triệu đồng và cam kết sẽ tăng thêm 5% lương mỗi năm so với năm liền trước đó. Tính tổng số lương mà chuyên gia đó nhận được sau khi làm việc cho công ty 10 năm (làm tròn đến triệu đồng).

    Xem chi tiết
  • Câu hỏi mở đầu trang 48

    Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Tính tổng số ghế của nhà hát đó.

    Xem chi tiết
  • Câu hỏi mở đầu trang 42

    Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân \( P_n \) (nghìn người) của thành phố đó sau \( n \) năm, kể từ năm 2020, được tính bằng công thức \( P_n = 500(1 + 0,02)^n \). Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?

    Xem chi tiết
  • Bài 2.22 trang 56

    Khẳng định nào sau đây là sai? A. Một dãy số tăng thì bị chặn dưới B. Một dãy số giảm thì bị chặn trên C. Một dãy số bị chặn thì phải tăng hoặc giảm D. Một dãy số không đổi thì bị chặn

    Xem lời giải
  • Bài 2.23 trang 56

    Cho dãy số (1,frac{1}{2},frac{1}{4},frac{1}{8}, ldots ;) (số hạng sau bằng một nửa số hạng liền trước nó) Công thức tổng quát của dãy số đã cho là:

    Xem lời giải
  • Giải mục 1 trang 52, 53

    Cho dãy số (left( {{u_n}} right)) với ({u_n} = {3.2^n}) a) Viết năm số hạng đầu của dãy số này b) Dự đoán hệ thức truy hồi liên hệ giữa ({u_n}) và ({u_{n - 1}})

    Xem lời giải
  • Giải mục 1 trang 48, 49

    Cho dãy số (left( {{u_n}} right)) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần a) Viết năm số hạng đầu của dãy số b) Dự đoán công thức biểu diễn số hạng ({u_n}) theo số hạng ({u_{n - 1}})

    Xem lời giải