Đề số 39 - Đề thi vào lớp 10 môn Toán

Đề thi vào lớp 10 môn Toán - Đề số 39 có đáp án và lời giải chi tiết

Đề bài

Câu I: (2,0 điểm)

1) Giải phương trình: \({x^2} + 8x + 7 = 0\)

2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y =  - 6\\5x + y = 20\end{array} \right.\)

Câu II: (2,0 điểm)

Cho biểu thức \(A = \dfrac{{\sqrt x  + 1}}{{x + 4\sqrt x  + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x  + 2}}} \right),\) với \(x > 0\)

1. Rút gọn biểu thức A.

2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)

Câu III: (2,0 điểm)

1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)

2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\)  với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:

\(\sqrt {x_1^2 + 2018}  - {x_1} = \sqrt {x_2^2 + 2018}  + {x_2}\)

Bài IV: (3,0 điểm)

Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.

1. Chứng minh AMEI là tứ giác nội tiếp.

2. Chứng minh \(IB.NE = 3IE.NB\)

3. Khi điểm E thay đổi, chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

Câu V: (1,0 điểm)

Cho \(a,b,c\) là các số thực dương thỏa mãn: \(a + b + c = 1\) . Chứng minh \(\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} \ge 30.\)

Lời giải chi tiết

Câu I.

1) Giải phương trình: \({x^2} + 8x + 7 = 0\)

Ta có: \(a - b + c = 1 - 8 + 7 = 0\) nên phương trình đã cho luôn có một nghiệm là \(x =  - 1\) và nghiệm còn lại là: \(x =  - \dfrac{c}{a} =  - 7\)

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1; - 7} \right\}\).

2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y =  - 6\\5x + y = 20\end{array} \right.\)

\(\left\{ \begin{array}{l}2x - y =  - 6\\5x + y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x = 14\\y = 20 - 5x\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 20 - 5.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 10\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm là: \(\left( {x;y} \right) = \left( {2;10} \right)\)

Câu II.

Cho biểu thức \(A = \dfrac{{\sqrt x  + 1}}{{x + 4\sqrt x  + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x  + 2}}} \right),\) với \(x > 0\)

1. Rút gọn biểu thức A.

\(\begin{array}{l}A = \dfrac{{\sqrt x  + 1}}{{x + 4\sqrt x  + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x  + 2}}} \right)\\ = \dfrac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  + 2} \right)}^2}}}:\left( {\dfrac{x}{{\sqrt x \left( {\sqrt x  + 2} \right)}} + \dfrac{x}{{\sqrt x  + 2}}} \right)\\ = \dfrac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  + 2} \right)}^2}}}:\left( {\dfrac{{\sqrt x }}{{\sqrt x  + 2}} + \dfrac{x}{{\sqrt x  + 2}}} \right)\\ = \dfrac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  + 2} \right)}^2}}}.\dfrac{{\sqrt x  + 2}}{{\sqrt x \left( {\sqrt x  + 1} \right)}}\\ = \dfrac{1}{{\sqrt x \left( {\sqrt x  + 2} \right)}}\end{array}\)

Vậy với \(x > 0\) thì \(\)

2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)

\(\begin{array}{l}A \ge \dfrac{1}{{3\sqrt x }} \Leftrightarrow \dfrac{1}{{\sqrt x \left( {\sqrt x  + 2} \right)}} \ge \dfrac{1}{{3\sqrt x }}\\ \Leftrightarrow \dfrac{{3 - \left( {\sqrt x  + 2} \right)}}{{\sqrt x \left( {\sqrt x  + 2} \right)}} \ge 0\\ \Leftrightarrow \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x  + 2} \right)}} \ge 0\end{array}\)

Với \(x > 0\) ta có: \(\sqrt x \left( {\sqrt x  + 2} \right) > 0\) khi đó \(\dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x  + 2} \right)}} \ge 0 \) \(\Leftrightarrow 1 - \sqrt x  \ge 0 \Leftrightarrow x \le 1\)

Kết hợp với điều kiện ta được: \(0 < x \le 1\)  thỏa mãn yêu cầu bài toán.

Câu III.

1.  Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)

Đường thẳng (d) song song với đường thẳng (d’) khi và chỉ khi: \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 3\end{array} \right.\)

Khi đó (d) trở thành: \(y = 2x + b\left( {b \ne 3} \right)\)

Đường thẳng (d’) đi qua điểm \(A\left( {1; - 1} \right)\) nên ta có:

\( - 1 = 2.1 + b \Leftrightarrow b =  - 3\left( {tm} \right)\)

Vậy đường thẳng (d) cần tìm là: \(y = 2x - 3\)

2.  Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\)  với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:

\(\sqrt {x_1^2 + 2018}  - {x_1} = \sqrt {x_2^2 + 2018}  + {x_2}\)

Xét biệt thức \(\Delta  = {\left( {m - 2} \right)^2} + 12 \ge 12 > 0,\forall m\)

Vậy phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Giả sử \({x_1} > {x_2}\)

Theo hệ thức Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 2\\{x_1}{x_2} =  - 3\end{array} \right.\)

Theo đề ra ta có:

 \(\begin{array}{l}\sqrt {x_1^2 + 2018}  - {x_1} = \sqrt {x_2^2 + 2018}  + {x_2}\\ \Leftrightarrow \sqrt {x_1^2 + 2018}  - \sqrt {x_2^2 + 2018}  = {x_1} + {x_2}\\ \Leftrightarrow x_1^2 + 2018 + x_2^2 + 2018 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)}  = x_1^2 + x_2^2 + 2{x_1}{x_2}\\\,\,\left( {Do\,\,{x_1} - {x_2} > 0} \right)\\ \Leftrightarrow 4036 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)}  = 2{x_1}{x_2}\\ \Leftrightarrow \sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)}  = 2018 - {x_1}{x_2}\\ \Leftrightarrow \left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right) = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow x_1^2x_2^2 + 2018\left( {x_1^2 + x_2^2} \right) + {2018^2} = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] =  - 2{x_1}{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} = 0\\ \Leftrightarrow {\left( {m - 2} \right)^2} = 0\\ \Leftrightarrow m = 2\end{array}\)

Vậy m = 2 thỏa mãn yêu cầu bài toán.

Bài IV.

Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.

            

1. Chứng minh AMEI là tứ giác nội tiếp.

Ta có: MA là tiếp tuyến của (O) tại A nên \(\angle IAM = {90^0}\)

Xét tứ giác \(AMEI\) có \(\angle IAM + \angle IEM = {90^0} + {90^0} = {180^0}\)

\( \Rightarrow \)  Tứ giác \(AMEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

2. Chứng minh \(IB.NE = 3IE.NB\)

Ta có \(\angle IEA + \angle IEB = \angle AEB = {90^0}\) (góc nội tiếp chắn nửa đường tròn);

\(\angle NEB + \angle IEB = \angle NEI = {90^0}\,\,\left( {gt} \right)\);

\( \Rightarrow \angle IEA = \angle NEB\)

Xét \(\Delta IEA\) và \(\Delta NEB\) có:

\(\angle IEA = \angle NEB\,\,\left( {cmt} \right)\);

\(\angle IAE = \angle BAE = \angle NBE\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BE);

\( \Rightarrow \Delta IEA \sim \Delta NEB\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{IE}}{{IA}} = \dfrac{{NE}}{{NB}}\)

\(\Rightarrow IA.NE = IE.NB\)

\(\Rightarrow 3IA.NE = 3IE.NB\)

Do I là trung điểm của OA \( \Rightarrow IA = \dfrac{1}{2}OA = \dfrac{1}{2}.\dfrac{1}{2}AB = \dfrac{1}{4}AB \)

\(\Rightarrow IA = \dfrac{1}{3}IB\) hay \(IB = 3IA\).

\( \Rightarrow IB.NE = 3IE.NB\,\,\left( {dpcm} \right)\).

3. Khi điểm E thay đổi chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

+) Chứng minh tích \(AM.BN\) có giá trị không đổi

Xét tứ giác \(BNEI\) có \(\angle IBN + \angle IEN = {90^0} + {90^0} = {180^0}\) \( \Rightarrow \) Tứ giác \(BNEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

\( \Rightarrow \angle NEB = \angle NIB\) (hai góc nội tiếp cùng chắn cung NB)

Ta có \(\angle AMI = \angle AEI\) (hai góc nội tiếp cùng chắn cung AI) ;

Mà \(\angle AEI = \angle NEB\,\,\left( {cmt} \right)\)

\( \Rightarrow \angle AMI = \angle NIB\).

Xét \(\Delta AMI\) và \(\Delta BIN\) có:

\(\begin{array}{l}\angle AMI = \angle NIB\,\,\left( {cmt} \right);\\\angle MAI = \angle IBN = {90^0}\,\,\left( {gt} \right);\\ \Rightarrow \Delta AMI \sim \Delta BIN\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AM}}{{BI}} = \dfrac{{AI}}{{BN}}\\ \Rightarrow AM.BN = AI.BI\end{array}\)

Ta có \(AI = \dfrac{1}{4}AB = \dfrac{1}{4}.2R = \dfrac{R}{2};\)

\(BI = \dfrac{3}{4}AB = \dfrac{3}{4}.2R = \dfrac{{3R}}{2}\) 

\( \Rightarrow AM.BN = \dfrac{R}{2}.\dfrac{{3R}}{2} = \dfrac{{3{R^2}}}{4} = const\).

+) Tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

Tứ giác BNEI là tứ giác nội tiếp (cmt) \( \Rightarrow \angle ENI = \angle EBI\) (hai góc nội tiếp cùng chắn cung EI)

Do tứ giác \(AMEI\) nội tiếp (cmt) \( \Rightarrow \angle IME = \angle IAE\) (hai góc nội tiếp cùng chắn cung IE)

\( \Rightarrow \angle ENI = \angle IME = \angle EBI + \angle IAE = {90^0}\) (\(\Delta ABE\) vuông tại E)

\( \Rightarrow \angle MIN = {90^0} \Rightarrow \Delta IMN\) vuông tại I \( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN\)

Đặt \(\angle AIM = \alpha \) \( \Rightarrow \angle BNI = \alpha \,\,\left( {{0^0} < \alpha  < {{90}^0}} \right)\) \(\left( {Do\,\,\Delta AMI \sim \Delta BIN} \right)\).

Xét tam giác vuông AIM có \(\cos \angle AIM = \cos \alpha  = \dfrac{{AI}}{{MI}}\)

\(\Rightarrow MI = \dfrac{{AI}}{{\cos \alpha }} = \dfrac{{\dfrac{R}{2}}}{{\cos \alpha }} = \dfrac{R}{{2\cos \alpha }}\)

Xét tam giác vuông BIN có : \(\sin \angle BNI = \sin \alpha  = \dfrac{{BI}}{{IN}}\) \( \Rightarrow IN = \dfrac{{BI}}{{\sin \alpha }} = \dfrac{{\dfrac{{3R}}{2}}}{{\sin \alpha }} = \dfrac{{3R}}{{2\sin \alpha }}\)

\( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN = \dfrac{1}{2}.\dfrac{R}{{2\cos \alpha }}.\dfrac{{3R}}{{2\sin \alpha }} = \dfrac{{3{R^2}}}{{8\sin \alpha \cos \alpha }}\)

Do \({0^0} < \alpha  < {90^0}\) \( \Rightarrow \sin \alpha  > 0,\,\,\cos \alpha  > 0\) và \(\cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha } \).

\(\begin{array}{l} \Rightarrow \sin \alpha .\cos \alpha  = \sin \alpha .\sqrt {1 - {{\sin }^2}\alpha } \mathop  \le \limits^{Cauchy} \dfrac{{{{\sin }^2}\alpha  + 1 - {{\sin }^2}\alpha }}{2} = \dfrac{1}{2}\\ \Rightarrow {S_{IMN}} \ge \dfrac{{3{R^2}}}{{8.\dfrac{1}{2}}} = \dfrac{{3{R^2}}}{4}\end{array}\)

Dấu bằng xảy ra \( \Leftrightarrow \sin \alpha  = \sqrt {1 - {{\sin }^2}\alpha }\)

\(  \Leftrightarrow 2{\sin ^2}\alpha  = 1 \)

\(\Leftrightarrow \sin \alpha  = \dfrac{1}{{\sqrt 2 }} \Leftrightarrow \alpha  = {45^0}\)

Vậy \({S_{IMN\,\,\min }} = \dfrac{{3{R^2}}}{4} \Leftrightarrow \angle AIM = {45^0}\)

Câu V.

Ta có:

\(\begin{array}{l}\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} = \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{9abc}} + \dfrac{8}{{9abc}}\\ \ge \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}} + \dfrac{8}{{9\dfrac{{{{\left( {a + b + c} \right)}^3}}}{{27}}}}\\ \ge 2\sqrt {\dfrac{1}{{{a^2} + {b^2} + {c^2}}}.\dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}}}  + 24\\ \ge 2\sqrt {\dfrac{1}{{3\dfrac{{{{\left( {{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)}^2}}}{{27}}}}}  + 24 = 30\end{array}\)

 HocTot.XYZ

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close