Giải bài 11 trang 72 sách bài tập toán 11 - Cánh diều

Cho \(f = f\left( x \right),{\rm{ }}g = g\left( x \right)\) có đạo hàm tại điểm \(x\)

Đề bài

Cho \(f = f\left( x \right),{\rm{ }}g = g\left( x \right)\) có đạo hàm tại điểm \(x\) thuộc khoảng xác định và \(g = g\left( x \right) \ne 0,{\rm{ }}g' = g'\left( x \right) \ne 0\). Phát biểu nào sau đây là đúng?

A. \({\left( {\frac{f}{g}} \right)^\prime } = \frac{{f'}}{{g'}}.\)

B. \({\left( {\frac{f}{g}} \right)^\prime } = \frac{{f'g - fg'}}{{{g^2}}}.\)

C. \({\left( {\frac{f}{g}} \right)^\prime } = \frac{{f'}}{{{g^2}}}.\)

D. \({\left( {\frac{f}{g}} \right)^\prime } = \frac{{f'g + fg'}}{{{g^2}}}.\)

Phương pháp giải - Xem chi tiết

Dựa vào lý thuyết để trả lời

Lời giải chi tiết

Cho \(f = f\left( x \right),{\rm{ }}g = g\left( x \right)\) có đạo hàm tại điểm \(x\) thuộc khoảng xác định và \(g = g\left( x \right) \ne 0,{\rm{ }}{g'} = {g'}\left( x \right) \ne 0\). Ta có: \({\left( {\frac{f}{g}} \right)^\prime } = \frac{{f'g - fg'}}{{{g^2}}}.\)

Đáp án B.

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close