Giải bài 12 trang 35 sách bài tập toán 12 - Chân trời sáng tạoChọn đúng hoặc sai cho mỗi ý a, b, c, d. Hàm số (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}) có các tiệm cận là a) (x = 2). b) ({rm{x}} = 3). c) ({rm{y}} = 2). d) ({rm{y}} = 3). Đề bài Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Hàm số \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\) có các tiệm cận là a) \(x = 2\). b) \({\rm{x}} = 3\). c) \({\rm{y}} = 2\). d) \({\rm{y}} = 3\). Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \) thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng. ‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang. Lời giải chi tiết Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = + \infty \) Vậy \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = 3;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = 3\) Vậy \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho. a) Đ. b) S. c) S. d) Đ.
|