Bài 1.32 trang 20 SBT hình học 12

Giải bài 1.32 trang 20 sách bài tập hình học 12. Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, các mặt (SAB) và (SAD) vuông góc với đáy. Góc giữa mặt (SAC) và đáy bằng 60, AB = 2a , BC = a. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a.

Đề bài

Cho hai đoạn thẳng \(AB\) và \(CD\) chéo nhau, \(AC\) là đường vuông góc chung của chúng. Biết rằng \(AC = h, AB = a, CD = b\) và góc giữa hai đường thẳng \(AB\) và \(CD\) bằng \({60^0}\). Hãy tính thể tích của khối tứ diện \(ABCD\).

Phương pháp giải - Xem chi tiết

- Dựng hình hình bình hành \(CDBE\) và \(ABDF\).

- Tính thể tích tứ diện \(ABCE\) rồi suy ra thể tích khối tứ diện \(ABCD\).

Lời giải chi tiết

Dựng hình hình bình hành \(CDBE\) và \(ABDF\).

Khi đó, \(ABE.FDC\) là hình lăng trụ.

Ta có: \(AC \bot CD,CD//BE\) \( \Rightarrow AC \bot BE\), mà \(AC \bot AB\) nên \(AC \bot \left( {ABE} \right)\).

Lại có \(\widehat {\left( {AB,CD} \right)} = \widehat {\left( {AB,BE} \right)}\) \( = \widehat {ABE} = {60^0}\)

\( \Rightarrow {S_{ABE}} = \dfrac{1}{2}AB.BE.\sin \widehat {ABE}\)\( = \dfrac{1}{2}ab.\sin {60^0} = \dfrac{{ab\sqrt 3 }}{4}\)

\( \Rightarrow {V_{C.ABE}} = \dfrac{1}{3}{S_{ABE}}.AC\)\( = \dfrac{1}{3}.\dfrac{{ab\sqrt 3 }}{4}.h = \dfrac{{abh\sqrt 3 }}{{12}}\)

Từ đó suy ra \({V_{A.BCD}} = {V_{A.BCE}} = \dfrac{{abh\sqrt 3 }}{{12}}\).

HocTot.XYZ

  • Bài 1.33 trang 20 SBT hình học 12

    Giải bài 1.33 trang 20 sách bài tập hình học 12. Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số...

  • Bài 1.34 trang 20 SBT hình học 12

    Giải bài 1.34 trang 20 sách bài tập hình học 12. Cho tứ diện ABCD. Gọi hA, hB, hC, hD...

  • Bài 1.31 trang 20 SBT hình học 12

    Giải bài 1.31 trang 20 sách bài tập hình học 12. Tính thể tích khối lăng trụ có chiều cao bằng h, đáy là ngũ giác đều nội tiếp trong một đường tròn bán kính r.

  • Bài 1.30 trang 20 SBT hình học 12

    Giải bài 1.30 trang 20 sách bài tập hình học 12. Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân ở C. Cạnh B’B = a và tạo với đáy một góc bằng 600. Hình chiếu vuông góc hạ từ B’ lên đáy trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ đó theo a.

  • Bài 1.29 trang 20 SBT hình học 12

    Giải bài 1.29 trang 20 sách bài tập hình học 12. Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close