Bài 1.34 trang 20 SBT hình học 12

Giải bài 1.34 trang 20 sách bài tập hình học 12. Cho tứ diện ABCD. Gọi hA, hB, hC, hD...

Đề bài

Cho tứ diện \(ABCD\). Gọi \({h_A},{h_B},{h_C},{h_D}\;\) lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng: \(\dfrac{1}{{{h_A}}} + \dfrac{1}{{{h_B}}} + \dfrac{1}{{{h_C}}} + \dfrac{1}{{{h_D}}} = \dfrac{1}{r}\)

Phương pháp giải - Xem chi tiết

- Chia khối tứ diện thành bốn khối tứ diện nhỏ có đỉnh là tâm mặt cầu nội tiếp tứ diện và đáy là các mặt của tứ diện.

- Tính tỉ số thể tích mỗi khối tứ diện so với thể tích khối tứ diện \(ABCD\) và cộng vế với vế suy ra điều phải chứng minh.

Lời giải chi tiết

Gọi \(I\) là tâm mặt cầu nội tiếp tứ diện, \(V\)là thể tích tứ diện.

Ta có \({V_{I.BCD}} = \dfrac{1}{3}{S_{BCD}}.r\); \({V_{I.CDA}} = \dfrac{1}{3}{S_{CDA}}.r\); \({V_{I.DAB}} = \dfrac{1}{3}{S_{DAB}}.r\); \({V_{I.ABC}} = \dfrac{1}{3}{S_{ABC}}.r\)

\(V = {V_{IBCD}} + {V_{ICDA}} + {V_{IDAB}} + {V_{IABC}}\)

\( \Rightarrow \frac{V}{V} = \frac{{{V_{IBCD}} + {V_{ICDA}} + {V_{IDAB}} + {V_{IABC}}}}{V}\)

\( \Rightarrow 1 = \dfrac{{{V_{IBCD}}}}{V} + \dfrac{{{V_{ICDA}}}}{V} + \dfrac{{{V_{IDAB}}}}{V} + \dfrac{{{V_{IABC}}}}{V}\)

\( = \dfrac{{\dfrac{1}{3}r{S_{BCD}}}}{{\dfrac{1}{3}{h_A}{S_{BCD}}}} + \dfrac{{\dfrac{1}{3}r{S_{CDA}}}}{{\dfrac{1}{3}{h_B}{S_{CDA}}}}\) \( + \dfrac{{\dfrac{1}{3}r{S_{DAB}}}}{{\dfrac{1}{3}{h_C}{S_{DAB}}}} + \dfrac{{\dfrac{1}{3}r{S_{ABC}}}}{{\dfrac{1}{3}{h_D}{S_{ABC}}}}\)

\( = r\left( {\dfrac{1}{{{h_A}}} + \dfrac{1}{{{h_B}}} + \dfrac{1}{{{h_C}}} + \dfrac{1}{{{h_D}}}} \right)\)

\( \Rightarrow 1 = r\left( {\frac{1}{{{h_A}}} + \frac{1}{{{h_B}}} + \frac{1}{{{h_C}}} + \frac{1}{{{h_D}}}} \right)\)

\( \Rightarrow \dfrac{1}{r} = \dfrac{1}{{{h_A}}} + \dfrac{1}{{{h_B}}} + \dfrac{1}{{{h_C}}} + \dfrac{1}{{{h_D}}}\) (đpcm).

HocTot.XYZ

  • Bài 1.33 trang 20 SBT hình học 12

    Giải bài 1.33 trang 20 sách bài tập hình học 12. Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số...

  • Bài 1.32 trang 20 SBT hình học 12

    Giải bài 1.32 trang 20 sách bài tập hình học 12. Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, các mặt (SAB) và (SAD) vuông góc với đáy. Góc giữa mặt (SAC) và đáy bằng 60, AB = 2a , BC = a. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a.

  • Bài 1.31 trang 20 SBT hình học 12

    Giải bài 1.31 trang 20 sách bài tập hình học 12. Tính thể tích khối lăng trụ có chiều cao bằng h, đáy là ngũ giác đều nội tiếp trong một đường tròn bán kính r.

  • Bài 1.30 trang 20 SBT hình học 12

    Giải bài 1.30 trang 20 sách bài tập hình học 12. Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân ở C. Cạnh B’B = a và tạo với đáy một góc bằng 600. Hình chiếu vuông góc hạ từ B’ lên đáy trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ đó theo a.

  • Bài 1.29 trang 20 SBT hình học 12

    Giải bài 1.29 trang 20 sách bài tập hình học 12. Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close