Giải bài 14 trang 72 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho đường thẳng: \(\Delta :3x + 4y - 25 = 0\). Gọi (C) là đường tròn tâm O và tiếp xúc với \(\Delta \). a) Viết phương trình đường tròn (C) Đề bài Cho đường thẳng: \(\Delta :3x + 4y - 25 = 0\). Gọi (C) là đường tròn tâm O và tiếp xúc với \(\Delta \). a) Viết phương trình đường tròn (C) b) Tìm toạ độ tiếp điểm H của \(\Delta \) và (C). Lời giải chi tiết a) Bán kính của (C) bằng: \(R = d(O,\Delta ) = \frac{{\left| {3.0 + 4.0 - 25} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 5\) Vậy phương trình đường tròn (C) tâm O(0;0) bán kính R=5 là \({x^2} + {y^2} = 25\) b) Ta có: \(\Delta \) tiếp xúc (C) tại điểm H \(\begin{array}{l} \Rightarrow OH \bot \Delta \\ \Rightarrow \overrightarrow {{u_{OH}}} = \overrightarrow {{n_\Delta }} = (3;4)\\ \Rightarrow \overrightarrow {{n_{OH}}} = ( - 4;3)\end{array}\) => Phương trình đường thẳng OH là 4x- 3y= 0 Ta có \(H = OH \cap \Delta \), do đó tọa độ H là nghiệm của hệ \(\left\{ \begin{array}{l}3x + 4y - 25 = 0\\4x - 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 4\end{array} \right.\) Vậy H(3,4).
|