Giải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Tìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{x - 5}}{{2{rm{x}} + 1}}); b) (y = frac{{2{rm{x}}}}{{x - 3}}); c) (y = - frac{6}{{3{rm{x}} + 2}}).

Đề bài

Tìm các tiệm cận của đồ thị hàm số sau:

a) \(y = \frac{{x - 5}}{{2{\rm{x}} + 1}}\);

b) \(y = \frac{{2{\rm{x}}}}{{x - 3}}\);

c) \(y =  - \frac{6}{{3{\rm{x}} + 2}}\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{2}} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ - }} \frac{{x - 5}}{{2{\rm{x}} + 1}} =  + \infty ;\mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {{\frac{1}{2}}^ + }} \frac{{x - 5}}{{2{\rm{x}} + 1}} =  - \infty \)

Vậy \(x =  - \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2};\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2}\)

Vậy \(y = \frac{1}{2}\) là tiệm cận ngang của đồ thị hàm số đã cho.

b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2{\rm{x}}}}{{x - 3}} =  - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2{\rm{x}}}}{{x - 3}} =  + \infty \)

Vậy \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2\)

Vậy \(y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{2}{3}} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to  - {{\frac{2}{3}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {{\frac{2}{3}}^ - }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) =  + \infty ;\mathop {\lim }\limits_{x \to  - {{\frac{2}{3}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {{\frac{2}{3}}^ + }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) =  - \infty \)

Vậy \(x =  - \frac{2}{3}\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) =  - 2;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) =  - 2\)

Vậy \(y =  - 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close