Giải Bài 2 trang 30 sách bài tập toán 7 - Chân trời sáng tạoCho đa thức \(A\left( t \right) = 2{t^4} - 8{t^3} + 9t + 3\). Tìm đa thức \(B\left( t \right)\) sao cho \(B\left( t \right) - A\left( t \right) = - 4{t^3} + 3{t^2} + 8t\). Đề bài Cho đa thức \(A\left( t \right) = 2{t^4} - 8{t^3} + 9t + 3\). Tìm đa thức \(B\left( t \right)\) sao cho \(B\left( t \right) - A\left( t \right) = - 4{t^3} + 3{t^2} + 8t\). Phương pháp giải - Xem chi tiết Bước 1: Thực hiện cộng trừ các đơn thức cùng một biến để rút gọn đa thức đã cho. Bước 2: Sắp xếp các đơn thức theo lũy thừa giảm dần của biến. Bước 3: Thực hiện phép tính theo hàng ngang hoặc cột dọc. Lời giải chi tiết \(\begin{array}{l}B\left( t \right) - A\left( t \right) = - 4{t^3} + 3{t^2} + 8t \Rightarrow B\left( t \right) = - 4{t^3} + 3{t^2} + 8t + A\left( t \right)\\ = - 4{t^3} + 3{t^2} + 8t + 2{t^4} - 8{t^3} + 9t + 3 = 2{t^4} - 12{t^3} + 3{t^2} + 17t + 3\end{array}\) Vậy \(B\left( t \right) = 2{t^4} - 12{t^3} + 3{t^2} + 17t + 3\).
|