Giải bài 2 trang 78 SGK Toán 8 – Cánh diều

Cho hai tam giác ABC và MNP có

Đề bài

Cho hai tam giác ABC và MNP có \(AB = 2,BC = 5,CA = 6,MN = 4,NP = 10,PM = 12\).

Hãy viết các cặp góc tương ứng bằng nhau của hai tam giác trên và giải thích kết quả.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào trường hợp đồng dạng thứ nhất của tam giác để tìm ra các cặp tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.

Lời giải chi tiết

Ta thấy:

\(\begin{array}{l}\frac{{AB}}{{MN}} = \frac{2}{4} = \frac{1}{2}\\\frac{{BC}}{{NP}} = \frac{5}{{10}} = \frac{1}{2}\\\frac{{CA}}{{PM}} = \frac{6}{{12}} = \frac{1}{2}\\ \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\end{array}\)

Xét tam giác ABC và tam giác MNP có: \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\)

\( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)

\( \Rightarrow \widehat {ABC} = \widehat {MNP},\,\,\widehat {ACB} = \widehat {MPN},\,\,\widehat {BAC} = \widehat {NMP}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close