Giải bài 2.2 trang 25 SGK Toán 10 tập 1 – Kết nối tri thứcBiểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ: Đề bài Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ: a) \(3x + 2y \ge 300\) b) \(7x + 20y < 0\) Phương pháp giải - Xem chi tiết a) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn \(ax + by \ge c\) như sau: Bước 1: Vẽ đường thẳng (nét liền). Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c khác 0 thì ta lấy điểm để thay vào là gốc O(0;0). Nếu O không thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d không chứa điểm đã lấy. b) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax+b Bước 1: Vẽ đường thẳng (nét đứt). Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c = 0 thì ta lấy điểm A(-1;-1) để thay vào. Nếu A thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm A đã lấy. Lời giải chi tiết a)
Bước 1: Vẽ đường thẳng \(3x + 2y = 300\) đi qua B(100;0) và A(0;150) Bước 2: Thay tọa độ điểm O(0;0) vào 3x+2y ta được 3.0+2.0<300 => Điểm O không thuộc miền nghiệm. => Miền nghiệm của bất phương trình là nửa mặt phẳng có bờ 3x+2y=300 và không chứa điểm O. b)
Bước 1: Vẽ đường thẳng 7x+20y=0 (nét đứt) đi qua O(0;0) và C(1;-7/20) Bước 2: Thay tọa độ điểm A(-1;-1) vào biểu thức 7x+20y ta được: 7.(-1)+20.(-1)=-27<0 => Điểm A thuộc miền nghiệm => Miền nghiệm là nửa mặt phẳng bờ là đường thẳng 7x+20y=0 và chứa điểm A(-1;-1) (không kể đường thẳng 7x+20y=0)
|