Giải bài 22 trang 66 sách bài tập toán 9 - Cánh diều tập 2

Bác Na dùng 200 m rào dây thép gai để rào một mảnh đất đủ rộng thành một mảnh vườn hình chữ nhật. a) Lập công thức tính diện tích S(x) của mảnh vườn hình chữ nhật rào được theo chiều rộng x (m) của mảnh vườn đó. b) Tìm diện tích lớn nhất có thể rào được của mảnh vườn hình chữ nhật đó.

Đề bài

Bác Na dùng 200 m rào dây thép gai để rào một mảnh đất đủ rộng thành một mảnh vườn hình chữ nhật.

a) Lập công thức tính diện tích S(x) của mảnh vườn hình chữ nhật rào được theo chiều rộng x (m) của mảnh vườn đó.

b) Tìm diện tích lớn nhất có thể rào được của mảnh vườn hình chữ nhật đó.

Phương pháp giải - Xem chi tiết

a) Bước 1: Tìm nửa chu vi mảnh vườn, từ đó biểu diễn chiều dài thông qua chiều rộng và nửa chu vi.

Bước 2: Diện tích S(x) = chiều dài . chiều rộng.

b) Tìm diện tích lớn nhất có thể rào được của mảnh vườn nghĩa là đi tìm giá trị lớn nhất của biểu thức \(S\left( x \right) = x.\left( {100 - x} \right)\).

Bước 1: Biến đổi

\(S\left( x \right) = x.\left( {100 - x} \right) =  - {\left( {x - 50} \right)^2} + 2500.\)

Bước 2: Biện luận để tìm GTLN của S(x).

Lời giải chi tiết

a) Do 200m dây thép gai đủ để rào mảnh vườn nên chu vi mảnh vườn hình chữ nhật là 200m.

Do đó nửa chu vi là \(200:2 = 100\) mét,

khi đó chiều dài mảnh vườn là \(100 - x\)(mét) với \(0 < x < 100\).

Diện tích mảnh vườn là: \(S\left( x \right) = x.\left( {100 - x} \right)\) m2.

b) Ta có:

\(S\left( x \right) = x.\left( {100 - x} \right) \\=  - \left( {{x^2} - 100x} \right) \\=  - {\left( {x - 50} \right)^2} + 2500\)

Do \({\left( {x - 50} \right)^2} \ge 0\) nên \( - {\left( {x - 50} \right)^2} \le 0\),

suy ra \( - {\left( {x - 50} \right)^2} + 2500 \le 2500\forall x\).

Dấu “=” xảy ra khi và chỉ khi \({\left( {x - 50} \right)^2}\) hay \(x = 50\) (thỏa mãn).

Vậy diện tích lớn nhất có thể rào được của mảnh vườn là 2500m2 khi \(x = 50\).

  • Giải bài 23 trang 66 sách bài tập toán 9 - Cánh diều tập 2

    Người ta lát đá và trồng cỏ cho một sân chơi. Sân có dạng hình chữ nhật với các kích thước a (m), (a + 8) (m) ((a > 0)). Người ta đã dùng 1000 viên đá lát hình vuông cạnh 80 cm để lát, diện tích còn lại để trồng cỏ. Tìm a, biết chi phí để trồng cỏ là 4 480 000 đồng và giá trồng mỗi mét vuông cỏ là 35 000 đồng.

  • Giải bài 21 trang 66 sách bài tập toán 9 - Cánh diều tập 2

    a) Lập công thức tính diện tích xung quanh của một hình chóp tam giác đều, biết độ dài cạnh đáy là x (dm) và độ dài trung đoạn là (x+2) (dm). b) Tìm x để diện tích xung quanh của hình chóp tam giác đều đó là (36d{m^2}.)

  • Giải bài 20 trang 66 sách bài tập toán 9 - Cánh diều tập 2

    Một hộp quà thiết kế theo dạng hình hộp chữ nhật. Bốn mặt thân hộp là các hình chữ nhật may bằng vải màu đỏ có chiều dài 22 cm, hai đáy hộp là các hình vuông cạnh a cm may bằng vải màu xanh (xem Hình 8). Tìm a để tổng diện tích vải màu đỏ nhiều hơn ba lần tổng diện tích vải màu xanh là 312 cm2, biết (0 < a < 8).

  • Giải bài 19 trang 66 sách bài tập toán 9 - Cánh diều tập 2

    Một công ty dự định thuê một số xe lớn (cùng loại) để chở hết 210 người đi du lịch Hội An. Nhưng thực tế, công ty lại thuê các xe nhỏ hơn (cùng loại). Biết rằng số xe nhỏ phải thuê nhiều hơn số xe lớn là 2 chiếc thì mới chở hết số người trên và mỗi xe nhỏ chở ít hơn mỗi xe lớn là 12 người. Tìm số xe nhỏ đã thuê.

  • Giải bài 18 trang 65 sách bài tập toán 9 - Cánh diều tập 2

    Một kilôgam thịt lợn có giá bán ban đầu là 100 nghìn đồng. Vào dịp Tết Nguyên Đán, người ta tăng giá thêm x% so với giá bán ban đầu. Sau Tết Nguyên Đán do nguồn cung khan hiếm nên người ta tiếp tục tăng giá thêm x% so với giá đã tăng. Sau hai đợt tăng giá, giá của một kilôgam thịt lợn là 108 nghìn đồng. Tìm x (làm tròn đến hàng đơn vị).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close