Giải bài 2.21 trang 50 SGK Toán 8 - Cùng khám pháRút gọn biểu thức sau theo hai cách GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Rút gọn biểu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng): \(\frac{{x + 1}}{x}.\left( {{x^2} - x + 1 - \frac{{{x^2}}}{{x + 1}}} \right)\). Phương pháp giải - Xem chi tiết Sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức thành hai cách. Lời giải chi tiết Cách 1: \(\begin{array}{l}\frac{{x + 1}}{x}.\left( {{x^2} - x + 1 - \frac{{{x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.\left( {\frac{{{x^2}\left( {x + 1} \right)}}{{x + 1}} - \frac{{x\left( {x + 1} \right)}}{{x + 1}} + \frac{{x + 1}}{{x + 1}} - \frac{{{x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.\left( {\frac{{{x^3} + {x^2} - {x^2} - x + x + 1 - {x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.\left( {\frac{{{x^3} - {x^2} + 1}}{{x + 1}}} \right) = \frac{{\left( {x + 1} \right)\left( {{x^3} - {x^2} + 1} \right)}}{{x.\left( {x + 1} \right)}} = \frac{{{x^3} - {x^2} + 1}}{x}\end{array}\) Cách 2: \(\begin{array}{l}\frac{{x + 1}}{x}.\left( {{x^2} - x + 1 - \frac{{{x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.{x^2} - \frac{{x + 1}}{x}.x + \frac{{x + 1}}{x} - \frac{{x + 1}}{x}.\frac{{{x^2}}}{{x + 1}}\\ = x\left( {x + 1} \right) - \left( {x + 1} \right) + \frac{{x + 1}}{x} - x\\ = {x^2} + x - x - 1 + \frac{{x + 1}}{x} - x\\ = {x^2} - 1 - x + \frac{{x + 1}}{x}\\ = \frac{{{x^3} - x - {x^2} + x + 1}}{x} = \frac{{{x^3} - {x^2} + 1}}{x}\end{array}\)
|