Bài 2.21 trang 61 SBT hình học 12Giải bài 2.21 trang 61 sách bài tập hình học 12. Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE Đề bài Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE. Phương pháp giải - Xem chi tiết - Xác định tâm mặt cầu ngoại tiếp hình chóp (giao điểm của trục đường tròn ngoại tiếp tam giác CDE và mặt phẳng trung trực của SE) - Tính toán dựa trên các kiến thức hình học đã biết. Lời giải chi tiết Tam giác CED là tam giác vuông cân tại E nên trục của đường tròn đi qua ba điểm C, E, D là đường thẳng \(\displaystyle \Delta \) đi qua trung điểm I của đoạn thẳng CD và song song với SA. Gọi M, N lần lượt là trung điểm của SE và SC. Ta có mặt phẳng (ABNM) là mặt phẳng trung trực của đoạn SE. Vậy tâm O của mặt cầu ngoại tiếp hình chóp S.CDE chính là giao điểm của \(\displaystyle \Delta \) và mp(ABNM). Gọi K là trung điểm của AB thì KN // AM và do đó KN //(SAE). Ta có IK // AD nên IK // (SAE). Vậy KN và \(\displaystyle \Delta \) đồng phẳng và ta có O là giao điểm cần tìm. Chú ý rằng OIK là tam giác vuông cân, vì \(\displaystyle \widehat {OKI} = \widehat {MAE} = {45^0}\) Ta có OI = IK, trong đó \(\displaystyle IK = {{BC + AD} \over 2} = {{a + 2a} \over 2} = {{3a} \over 2}\) Vậy \(\displaystyle O{C^2} = O{I^2} + I{C^2} = {{9{a^2}} \over 4} + {{2{a^2}} \over 4}\) (vì \(\displaystyle CD = a\sqrt 2 ;IC = {{CD} \over 2}\)). Do đó, bán kính mặt cầu ngoại tiếp hình chóp S.CDE là: \(\displaystyle r = OC = {{a\sqrt {11} } \over 2}\). HocTot.XYZ
|