Bài 2.29 trang 63 SBT hình học 12

Giải bài 2.29 trang 63 sách bài tập hình học 12. Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.

Đề bài

Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.

a) Xác định tâm mặt cầu ngoại tiếp tứ diện SABC.

b) Tính bán kính của mặt cầu ngoại tiếp tứ diện SABC trong trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc bằng 300.

Phương pháp giải - Xem chi tiết

a) Tâm của mặt cầu ngoại tiếp tứ diện các đều các đỉnh.

b) Tính toán dựa vào các kiến thức hình học đã biết.

Lời giải chi tiết

a) Gọi I là trung điểm của cạnh AB.

Vì tam giác ABC vuông cân tại C nên ta có IA = IB = IC.

Vậy I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó, tâm mặt cầu ngoại tiếp tứ diện SABC  phải nằm trên đường thẳng d’ vuông góc với mặt phẳng (ABC) tại I.

Ta suy ra d’ // d. Do đó  d’ cắt SB tại trung điểm O của đoạn SB. Ta có  OB = OS = OA = OC và như vậy O là tâm đường tròn ngoại tiếp tứ diện SABC.

b) Trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 300 thì góc của hai mặt phẳng đó chính là góc \(\widehat {SCA}\).

Thật vậy, vì \(SA \bot (ABC)\) mà \(AC \bot CB\) nên ta có \(SC \bot CB\). Do đó \(\widehat {SCA} = {30^0}\) .

Vì AB = 2a  nên ta có \(AC = a\sqrt 2 \) ta suy ra \(SA = AC.\tan {30^0} = a\sqrt 2 .{{\sqrt 3 } \over 3} = {{a\sqrt 6 } \over 3}\).

Gọi r là bán kính mặt cầu ngoại tiếp tứ diện khi \(\widehat {SCA} = {30^0}\) .

Ta có \(r = {{SB} \over 2} = OA = OB = OC = {\rm{OS}}\), trong đó SB2 = SA2 + AB2

Vậy \(S{B^2} = {{6{a^2}} \over 9} + 4{a^2} = {{42{a^2}} \over 9}\).

Do đó, \(SB = {{a\sqrt {42} } \over 3}\)

Ta suy ra \(r = {{SB} \over 2} = {{a\sqrt {42} } \over 6}\).

HocTot.XYZ

  • Bài 2.30 trang 63 SBT hình học 12

    Giải bài 2.30 trang 63 sách bài tập hình học 12. Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc với nhau.

  • Bài 2.31 trang 63 SBT hình học 12

    Giải bài 2.31 trang 63 sách bài tập hình học 12. Cho hình lập phương ABCD.A’B’C’D’ cạnh a...

  • Bài 2.32 trang 63 SBT hình học 12

    Giải bài 2.32 trang 63 sách bài tập hình học 12. Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’.

  • Bài 2.28 trang 62 SBT hình học 12

    Giải bài 2.28 trang 62 sách bài tập hình học 12. Mặt phẳng (Q) song song với mặt phẳng (P) cắt ∆ và ∆' lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).

  • Bài 2.27 trang 62 SBT hình học 12

    Giải bài 2.27 trang 62 sách bài tập hình học 12. Trong mặt phẳng a, cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close