Giải bài 3.12 trang 66 SGK Toán 8 - Cùng khám phá

Cho ABCD là hình bình hành.

Đề bài

Cho ABCD là hình bình hành. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD và AD. Chứng minh rằng:

a) AMPD là hình bình hành

b) AN song song CQ

c) MNPQ là hình bình hành.

Phương pháp giải - Xem chi tiết

a) Sử dụng dấu hiệu nhận biết của hình bình hành:

Tứ giác có các cặp cạnh đối song song và bằng nhau là hình bình hành.

b) Sử dụng dấu hiệu nhận biết của hình bình hành chứng minh AQCN là hình bình hành:

Tứ giác có các cặp cạnh đối song song và bằng nhau là hình bình hành.

c) Sử dụng dấu hiệu nhận biết của hình bình hành:

Tứ giác có các cặp cạnh đối song song và bằng nhau là hình bình hành.

Lời giải chi tiết

Có ABCD là hình bình hành nên \( AB//CD;AB = CD.\)

M và P lần lượt là trung điểm của AB và DC nên \(AM = \frac{1}{2}AB;DP = \frac{1}{2}DC\) suy ra \(AM = DP\left( 1 \right)\)

Vì \(AB//DC\) nên \(AM//DP\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(AMPD\) là hình bình hành (dhnb).

b) Có ABCD là hình bình hành nên \( AD//BC;AD = BC\)

Q và N lần lượt là trung điểm của AD và BC nên \(AQ = \frac{1}{2}AD;CN = \frac{1}{2}BC\). Do đó \(AQ = CN\left( 3 \right)\)

Vì \(AD//BC\) nên \(AQ//CN\left( 4 \right)\)

Từ \(\left( 3 \right)\) và \(\left( 4 \right)\) suy ra AQCN là hình bình hành (dhnb) nên \( AN//CQ\) (tính chất hbh).

c) Xét tam giác ABD có QM là đường trung bình nên \( QM//BD;QM = \frac{1}{2}BD\left( 5 \right)\)

Xét tam giác BCD có PN là đường trung bình nên \( PN//BD;PN = \frac{1}{2}BD\left( 6 \right)\)

Từ \(\left( 5 \right)\) và \(\left( 6 \right)\) suy ra \(QM//PN;QM = PN\). Do đó MNPQ là hình bình hành (dhnb).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close