Bài 3.59 trang 184 SBT giải tích 12

Giải bài 3.59 trang 184 sách bài tập giải tích 12. Thể tích khối tròn xoay tạo bởi phép quay quanh trục...

Đề bài

Thể tích khối tròn xoay tạo bởi phép quay quanh trục \(\displaystyle  Ox\) của hình phẳng giới hạn bởi các đường \(\displaystyle  y = {\sin ^{\frac{3}{2}}}x,y = 0,x = 0\) và \(\displaystyle  x = \frac{\pi }{2}\) bằng

A. \(\displaystyle  1\)                       B. \(\displaystyle  \frac{2}{7}\)

C. \(\displaystyle  2\pi \)                    D. \(\displaystyle  \frac{2}{3}\pi \)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính thể tích \(\displaystyle  V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).

Lời giải chi tiết

Ta có: \(\displaystyle  V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {{{\sin }^{\frac{3}{2}}}x} \right)}^2}dx} \) \(\displaystyle   = \pi .\int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}xdx} \) \(\displaystyle   = \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\sin xdx} \)

\(\displaystyle   =  - \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)d\left( {\cos x} \right)} \) \(\displaystyle   =  - \pi .\left. {\left( {\cos x - \frac{{{{\cos }^3}x}}{3}} \right)} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle   =  - \pi \left( { - 1 + \frac{1}{3}} \right) = \frac{{2\pi }}{3}\)

Chọn D.

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close