Bài 4 trang 108 SGK Hình học 12 Nâng caoGiải bài 4 trang 108 SGK Hình học 12 Nâng cao. Trong mỗi trường hợp sau, hãy nêu cách viết phương trình mặt phẳng:...
Lựa chọn câu để xem lời giải nhanh hơn
Trong mỗi trường hợp sau, hãy nêu cách viết phương trình mặt phẳng: LG a Đi qua ba điểm không thẳng hàng Phương pháp giải: Mặt phẳng đi qua ba điểm A, B, C không thẳng hàng là mặt phẳng đi qua A và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) làm vectơ pháp tuyến. Lời giải chi tiết: Cách làm: - Tính \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) - Viết pt mặt phẳng theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\) LG b Đi qua một điểm và vuông góc với một đường thẳng cho trước. Phương pháp giải: Mặt phẳng đi qua A và vuông góc với đường thẳng (d) là mặt phẳng đi qua A và nhận vectơ chỉ phương của (d) làm vectơ pháp tuyến. Lời giải chi tiết: Cách làm: - Tìm một VTCP của (d) cũng chính là VTPT \(\overrightarrow n \) của (P) - Viết pt mặt phẳng theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\). LG c Đi qua một điểm và song song với hai đường thẳng chéo nhau cho trước. Phương pháp giải: Mặt phẳng đi qua A và song song với hai đường thẳng chéo nhau d1,d2 là mặt phẳng đi qua A và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) làm vectơ pháp tuyến, trong đó \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) lần lượt là vectơ chỉ phương của d1 và d2. Lời giải chi tiết: Cách làm: - Tìm VTCP của \({d_1},{d_2}\). - Tính tích có hướng \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) - Viết pt mặt phẳng theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\) LG d Đi qua một đường thẳng và song song với một đường thẳng cho trước. Phương pháp giải: Mặt phẳng đi qua đường thẳng (d1) và song song với (d2 ) là mặt phẳng đi qua M0∈(d1) và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) làm vectơ pháp tuyến. Trong đó \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) lần lượt là vectơ chỉ phương của d1 và d2. Lời giải chi tiết: Cách làm: - Tìm một điểm đi qua của (P), chính là \({M_0}\left( {{x_0};{y_0}} \right) \in {d_1}\) và VTCP của \({d_1},{d_2}\). - Tính tích có hướng \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) - Viết pt mặt phẳng theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\) LG e Đi qua một điểm và vuông góc với hai mặt phẳng cho trước. Phương pháp giải: Mặt phẳng đi qua A vuông góc với hai mặt phẳng cắt nhau cho trước (P) và (Q) là mặt phẳng đi qua A và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right]\) làm vectơ pháp tuyến; trong đó \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của (P) và (Q). Lời giải chi tiết: Cách làm: - Tìm các VTPT của \(\left( P \right),\left( Q \right)\). - Tính tích có hướng \(\overrightarrow n = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right]\) - Viết pt mặt phẳng theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\). LG f Chứa hai đường thẳng song song hoặc cắt nhau. Lời giải chi tiết: Mặt phẳng chứa hai đường thẳng song song (d1) và (d2) là mặt phẳng đi qua M1 và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right]\) làm vectơ pháp tuyến, trong đó M1∈(d1),M2∈(d2),\(\overrightarrow {{u_1}} \) là vectơ chỉ phương của (d1). => Cách làm: - Tìm VTCP \(\overrightarrow {{u_1}} \) của \({d_1}\) và các điểm đi qua \({M_1} \in {d_1},{M_2} \in {d_2}\) - Tính tích có hướng \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right]\) - Viết pt mặt phẳng đi qua \({M_1}\) và nhận \(\overrightarrow n \) làm VTPT theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\) Mặt phẳng chứa hai đường thẳng cắt nhau (d1) và (d2) là mặt đi qua M1∈(d1) và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) làm vectơ pháp tuyến, trong đó \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) lần lượt là vectơ chỉ phương của d1 và d2. => Cách làm: - Tìm các VTCP \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) của \({d_1},{d_2}\) và điểm đi qua \({M_1} \in {d_1}\) - Tính tích có hướng \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) - Viết pt mặt phẳng đi qua \({M_1}\) và nhận \(\overrightarrow n \) làm VTPT theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\). LG g Đi qua một đường thẳng và vuông góc với một mặt phẳng cho trước. Phương pháp giải: Mặt phẳng đi qua đường thẳng (d) và vuông góc với mp(P) (d không vuông góc với mp(P)) là mặt phẳng đi qua M0∈(d) và nhận vectơ \(\overrightarrow {{n_{\left( Q \right)}}} = \left[ {\overrightarrow u ,\overrightarrow {{n_{\left( P \right)}}} } \right]\) làm vectơ pháp tuyến; trong đó \(\overrightarrow u \) là vectơ chỉ phương của (d), \(\overrightarrow {{n_{\left( P \right)}}} \) là vectơ pháp tuyến của mp(P). Lời giải chi tiết: Cách làm: - Tìm VTCP \(\overrightarrow u \) của \(d\), VTPT \(\overrightarrow {{n_{\left( P \right)}}} \) của \(\left( P \right)\) và điểm đi qua \({M_0} \in d\) - Tính tích có hướng \(\overrightarrow {{n_{\left( Q \right)}}} = \left[ {\overrightarrow u ,\overrightarrow {{n_{\left( P \right)}}} } \right]\) - Viết pt mặt phẳng đi qua \({M_0}\) và nhận \(\overrightarrow {{n_{\left( Q \right)}}} \) làm VTPT theo công thức \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\). HocTot.XYZ
|