Giải bài 41 trang 17 sách bài tập toán 10 - Cánh diềuCho 20 điểm phân biệt và không có ba điểm nào thẳng hàng. Lập được bao nhiêu tam giác có 3 đỉnh là 3 điểm trong 20 điểm đã cho? Đề bài Cho 20 điểm phân biệt và không có ba điểm nào thẳng hàng. Lập được bao nhiêu tam giác có 3 đỉnh là 3 điểm trong 20 điểm đã cho? A. 1 140 B. 6 C. 6 840 D. 8 000 Phương pháp giải - Xem chi tiết Do không có 3 điểm nào thẳng hàng nên lấy 3 điểm bất kì trong tổng số các điểm đã cho lập được một tam giác. Do đó ta áp dụng tổ hợp Lời giải chi tiết Trong 20 điểm phân biệt không có ba điểm nào thẳng hàng nên cứ lấy 3 điểm bất kì trong 20 điểm phân biệt ta được một tam giác Mỗi cách chọn 3 điểm trong 20 điểm phân biệt đã cho là một tổ hợp chập 3 của 20. Số cách chọn 3 điểm trong 20 điểm đã cho là \(C_{20}^3 = 1140\) ® Chọn A
|