Giải bài 44 trang 16 SBT toán 10 - Cánh diềuCho hai tập hợp \(A = \left\{ {x \in \mathbb{R}\left| {x + 3} \right. < 4 + 2x} \right\},B = \left\{ {x \in \mathbb{R}\left| {5x - 3 < 4x - 1} \right.} \right\}\). Tất cả các số nguyên thuộc cả hai tập hợp A và B là: Đề bài Cho hai tập hợp \(A = \left\{ {x \in \mathbb{R}\left| {x + 3} \right. < 4 + 2x} \right\},B = \left\{ {x \in \mathbb{R}\left| {5x - 3 < 4x - 1} \right.} \right\}\). Tất cả các số nguyên thuộc cả hai tập hợp A và B là: A. 0 và 1 B. -1; 0; 1 và 2 C. 1 và 2 D. 1 Phương pháp giải - Xem chi tiết Liệt kê các phần tử của tập hợp A và B. \(A \cap B = \{ x \in A|x \in B\} \) Lời giải chi tiết Ta có: \(x + 3 < 4 + 2x\) \(\begin{array}{l} \Leftrightarrow x - 2x < 4 - 3\\ \Leftrightarrow - x < 1\\ \Leftrightarrow x > - 1\\ \Rightarrow A = \left\{ {x \in \mathbb{R}|x > - 1} \right\} = \left( { - 1; + \infty } \right)\end{array}\) Ta có: \(5x - 3 < 4x - 1\) \(\begin{array}{l} \Leftrightarrow 5x - 4x < - 1 + 3\\ \Leftrightarrow x < 2\\ \Rightarrow B = \left\{ {x \in \mathbb{R}\left| {x < 2} \right.} \right\} = \left( { - \infty ;2} \right)\end{array}\) Suy ra \(A \cap B = ( - 1; + \infty ) \cap ( - \infty ;2) = \left( { - 1;2} \right)\) Vậy các số nguyên thuộc \(A \cap B = \left( { - 1;2} \right)\) là 0 và 1 Chọn A
|