Giải bài 4.57 trang 69 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Cho tam giác ABC đều có độ dài cạnh bằng 3a

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác \(ABC\) đều có độ dài cạnh bằng \(3a\). Lấy điểm \(M\) thuộc cạnh \(BC\) sao cho \(MB = 2MC.\) Tích vô hướng của hai vectơ \(\overrightarrow {MA} \) và \(\overrightarrow {MC} \) bằng

A. \(\frac{{{a^2}}}{2}\)

B. \( - \frac{{{a^2}}}{2}\)

C. \({a^2}\)

D. \( - {a^2}\)

Lời giải chi tiết

Ta có: \(\overrightarrow {MA}  = \overrightarrow {MB}  + \overrightarrow {BA}  =  - \overrightarrow {AB}  - \frac{2}{3}\overrightarrow {BC}  =  - \frac{1}{3}\overrightarrow {AB}  - \frac{2}{3}\overrightarrow {AC} \)

\(\overrightarrow {MC}  = \frac{1}{3}\overrightarrow {CB}  = \frac{1}{3}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} \)

Ta có: \(\overrightarrow {MA} .\overrightarrow {MC}  = \left( { - \frac{1}{3}\overrightarrow {AB}  - \frac{2}{3}\overrightarrow {AC} } \right)\left( {\frac{1}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} } \right)\)

\(\begin{array}{l} =  - \frac{1}{9}{\overrightarrow {AB} ^2} + \frac{2}{9}{\overrightarrow {AC} ^2} - \frac{1}{9}\overrightarrow {AB} .\overrightarrow {AC} \\ =  - \frac{1}{9}{\overrightarrow {AB} ^2} + \frac{2}{9}{\overrightarrow {AC} ^2} - \frac{1}{9}.AB.AC.\cos \widehat {BAC}\\ =  - \frac{1}{9}.9{a^2} + \frac{2}{9}.9{a^2} - \frac{1}{9}.9{a^2}.\cos {60^ \circ }\\ =  - {a^2} + 2{a^2} - {a^2}.\frac{1}{2} = \frac{{{a^2}}}{2}\end{array}\)

Chọn A.

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

close