Giải bài 5 trang 10 Chuyên đề học tập Toán 11 Chân trời sáng tạoTrong mặt phẳng tọa độ Oxy, xét phép biến hình h biến mỗi điểm M(x; y) thành điểm M’(x; y), trong đó Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Trong mặt phẳng tọa độ Oxy, xét phép biến hình h biến mỗi điểm M(x; y) thành điểm M’(x; y), trong đó \(\left\{ \begin{array}{l}x' = \frac{{\sqrt 2 }}{2}x - \frac{{\sqrt 2 }}{2}y\\y' = \frac{{\sqrt 2 }}{2}x + \frac{{\sqrt 2 }}{2}y\end{array} \right.\) Hãy chứng minh h là một phép dời hình. Phương pháp giải - Xem chi tiết Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì. Lời giải chi tiết Lấy hai điểm bất kì \(M({x_1};{y_1})\), \(N({x_2};{y_2})\). Suy ra \(MN = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \). Ta có ảnh của M, N qua phép biến hình h là \({\rm{M'}}\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_1} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_1};\frac{{\sqrt 2 }}{2}{{\rm{x}}_1} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_1}} \right)\), \({\rm{N'}}\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_2};\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_2}} \right)\). Khi đó \({\rm{M'N'}} = \sqrt {{{\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{x}}_1} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_1}} \right)}^2} + {{\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{x}}_1} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_1}} \right)}^2}} \) \( = \sqrt {\frac{1}{2}{{\left( {{{\rm{x}}_2} - {{\rm{y}}_2} - {{\rm{x}}_1} + {{\rm{y}}_1}} \right)}^2} + \frac{1}{2}{{\left( {{{\rm{x}}_2} + {{\rm{y}}_2} - {{\rm{x}}_1} - {{\rm{y}}_1}} \right)}^2}} \) \( = \frac{{\sqrt 2 }}{2}\sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1} - {{\rm{y}}_2} + {{\rm{y}}_1}} \right)}^2} + {{\left( {{{\rm{x}}_2} - {{\rm{x}}_1} + {{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \) \( = \frac{{\sqrt 2 }}{2}\sqrt {{{\left[ {\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right) - \left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)} \right]}^2} + {{\left[ {\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right) + \left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)} \right]}^2}} \) \( = \frac{{\sqrt 2 }}{2}\sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} - 2\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right) + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2} + {{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + 2\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right) + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \) \( = \frac{{\sqrt 2 }}{2}\sqrt {2{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + 2{{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \) \( = \frac{{\sqrt 2 }}{2}\sqrt {2\left[ {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \right]} \) \( = \frac{{\sqrt 2 }}{2}.\sqrt 2 \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \) \( = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \) \( = MN\). Vậy h là một phép dời hình.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|