Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1

Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\). a) Rút gọn biểu thức C. b) Tìm giá trị lớn nhất của C. c) Tìm giá trị của \(x\) để C có giá trị là các số dương.

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Đề bài

Cho biểu thức \(C = \left( {\frac{{\sqrt x  - 2}}{{x - 1}} - \frac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\).

a) Rút gọn biểu thức C.

b) Tìm giá trị lớn nhất của C.

c) Tìm giá trị của \(x\) để C có giá trị là các số dương.

Phương pháp giải - Xem chi tiết

a) Quy đồng mẫu thức các phân thức trong ngoặc.

b) Biến đổi \(C =  - \sqrt x \left( {\sqrt x  - 1} \right) =  - \left( {x - \sqrt x } \right) =  - \left( {x - 2.\frac{1}{2}\sqrt x  + \frac{1}{4}} \right) + \frac{1}{4} =  - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{1}{4}\)

Biện luận giá trị lớn nhất của C.

c) Áp dụng \(A.B > 0\) khi A,B cùng dấu.

Lời giải chi tiết

a) \(C = \left( {\frac{{\sqrt x  - 2}}{{x - 1}} - \frac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(= \left( {\frac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \frac{{\sqrt x  + 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\( = \left( {\frac{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \frac{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}{{{{\left( {\sqrt x  + 1} \right)}^2}\left( {\sqrt x  - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(\begin{array}{l} = \left( {\frac{{x - \sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \frac{{x + \sqrt x  - 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}\left( {\sqrt x  - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{x - \sqrt x  - 2 - x - \sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - 2\sqrt x }}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - \sqrt x {{\left( {1 - x} \right)}^2}}}{{\left( {x - 1} \right)\left( {\sqrt x  + 1} \right)}}\\ = \frac{{ - \sqrt x \left( {x - 1} \right)}}{{\sqrt x  + 1}}\\ =  - \sqrt x \left( {\sqrt x  - 1} \right)\end{array}\)

Vậy \(C =  - \sqrt x \left( {\sqrt x  - 1} \right)\) với \(x \ge 0,x \ne 1\).

b) \(C =  - \sqrt x \left( {\sqrt x  - 1} \right) =  - \left( {x - \sqrt x } \right)\)

\( =  - \left( {x - 2.\frac{1}{2}\sqrt x  + \frac{1}{4}} \right) + \frac{1}{4} =  - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{1}{4}\)

Với \(x \ge 0,x \ne 1\) ta có \({\left( {\sqrt x  - \frac{1}{2}} \right)^2} \ge 0\) suy ra \( - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} \le 0\), do đó \( - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{1}{4} \le \frac{1}{4}\)

Dấu “=” xảy ra khi \({\left( {\sqrt x  - \frac{1}{2}} \right)^2} = 0\) hay \(x = \frac{1}{4}\) (tmdk).

Vậy giá trị lớn nhất của C là \(\frac{1}{4}\) khi \(x = \frac{1}{4}\).

c) Ta có \(C =  - \sqrt x \left( {\sqrt x  - 1} \right) = \sqrt x \left( {1 - \sqrt x } \right)\)

Ta thấy \(\sqrt x  \ge 0\) với \(x \ge 0\) nên \(C > 0\) khi \(\sqrt x  > 0\) và \(1 - \sqrt x  > 0\)

\(\sqrt x  > 0\) hay \(x > 0\)

\(1 - \sqrt x  > 0\) hay \(x < 1\)

Kết hợp với điều kiện xác định, ta có \(0 < x < 1\). Vậy \(0 < x < 1\) thỏa mãn đề bài.

  • Giải bài 51 trang 69 sách bài tập toán 9 - Cánh diều tập 1

    Tìm x, biết: a) \(\frac{5}{3}\sqrt {15x} - \sqrt {15x} - 2 = \frac{1}{3}\sqrt {15x} \) với \(x \ge 0\). b) \(\sqrt {9{x^2}} = \left| { - 18} \right|\) với \(x \ge 0\). c) \({x^2} - 8 = 0\) d) \(\sqrt {{x^2} - 49} - \sqrt {x - 7} = 0\) với \(x \ge 7\)

  • Giải bài 49 trang 69 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(B = \frac{{x - 2}}{{x + 2\sqrt x }} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x + 2}}\) với \(x > 0\). a) Rút gọn biểu thức B. b) Tính giá trị biểu thức B tại \(x = 3 - 2\sqrt 2 .\) c) Tìm giá trị của \(x \in N*\) để B nguyên.

  • Giải bài 48 trang 69 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(A = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\) với \(x \ge 0,x \ne 1\) a) Rút gọn biểu thức A. b) Tìm giá trị của biểu thức A tại \(x = 121\). c) Tìm giá trị của \(x\) để \(A = \frac{1}{2}\). d) Tìm giá trị của \(x\) để \(A = \sqrt x - 1\).

  • Giải bài 47 trang 68 sách bài tập toán 9 - Cánh diều tập 1

    Rút gọn biểu thức a) \(\left( {5\sqrt {\frac{1}{5}} - \frac{1}{2}\sqrt {20} + \sqrt 5 } \right)\sqrt 5 \) b) \(\left( {\sqrt {\frac{1}{7}} - \sqrt {\frac{9}{7}} + \sqrt 7 } \right):\sqrt 7 \) c) \({\left( {\sqrt {\frac{2}{3}} - \sqrt {\frac{3}{2}} } \right)^2}\) d) \(\frac{{\sqrt {{{312}^2} - {{191}^2}} }}{{\sqrt {503} }}\) e) \(\sqrt {27.{{\left( {1 - \sqrt 3 } \right)}^4}} :3\sqrt {15} \) g) \(\frac{{\sqrt[3]{{135}}}}{{\sqrt[3]{5}}} - \sqrt[3]{{54}}.\sqrt[3]{4}\)

  • Giải bài 46 trang 68 sách bài tập toán 9 - Cánh diều tập 1

    Tốc độ lăn \(v(m/s)\) của vật thể có khối lượng m (kg) chịu tác động từ lực Ek được cho bởi công thức \(v = \sqrt {\frac{{2{E_k}}}{m}} \). a) Tính tốc độ lăn của quả bóng nặng 3kg khi một người tác động lực Ek = 18J lên quả bóng. b) Muốn lăn của quả bóng nặng 3kg với tốc độ 6m/s thì cần tác động lực bao nhiêu jun lên quả bóng đó?

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close