Giải bài 5.29 trang 87 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho ({u_n} = sqrt n left( {sqrt {n + 2} - sqrt {n - 1} } right)).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Đề bài

Cho \({u_n} = \sqrt n \left( {\sqrt {n + 2}  - \sqrt {n + 1} } \right)\). Khi đó \(\mathop {\lim }\limits_{n \to  + \infty } {u_n}\) bằng

A.\( + \infty \)                         

B. 0                     

C. \(\frac{1}{2}\)                    

D. 1

Phương pháp giải - Xem chi tiết

Đối với những biểu thức chứa hiệu của căn, chúng ta dùng phương pháp nhân liên hợp. Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Lời giải chi tiết

\(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 2} - \sqrt {n + 1} } \right)\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {\sqrt {n + 2} - \sqrt {n + 1} } \right)\left( {\sqrt {n + 2} + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 2} + \sqrt {n + 1} } \right)}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {n + 2 - n - 1} \right)}}{{\sqrt {n + 2} + \sqrt {n - 1} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt {n + 2} + \sqrt {n + 1} }}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt {1 + \frac{2}{n}} + \sqrt {1 + \frac{2}{n}} }} = \frac{1}{2}\).

Đáp án C

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

close