Giải bài 6 trang 35 sách bài tập toán 9 - Cánh diều tập 1Chứng minh: a) \(\sqrt 5 - \sqrt 7 < \sqrt 6 - 2\) b) \(\sqrt {10} + \sqrt {11} - \sqrt 7 < \sqrt {10} + \sqrt {13} - \sqrt 5 \) c) \({3.1024^2} > {2^{21}}\) Tổng hợp Đề thi vào 10 có đáp án và lời giải Toán - Văn - Anh Đề bài Chứng minh: a) \(\sqrt 5 - \sqrt 7 < \sqrt 6 - 2\) b) \(\sqrt {10} + \sqrt {11} - \sqrt 7 < \sqrt {10} + \sqrt {13} - \sqrt 5 \) c) \({3.1024^2} > {2^{21}}\) Phương pháp giải - Xem chi tiết a) + b) Áp dụng nếu \(a < b,c > d\) thì \(a - c < b - d\). c) Biến đổi \({2^{21}} = {2.2^{20}} = 2.{\left( {{2^{10}}} \right)^2} = {2.1024^2}\) rồi so sánh với \({3.1024^2}\). Lời giải chi tiết a) Ta có \(\sqrt 5 < \sqrt 6 \) và \(\sqrt 7 > 2\) nên \(\sqrt 5 - \sqrt 7 < \sqrt 6 - 2\). b) Ta có \(\sqrt {11} < \sqrt {13} \) và \(\sqrt 7 > \sqrt 5 \) nên \(\sqrt {11} - \sqrt 7 < \sqrt {13} - \sqrt 5 \) suy ra \(\sqrt {10} + \sqrt {11} - \sqrt 7 < \sqrt {10} + \sqrt {13} - \sqrt 5 \). c) Ta có \({2^{21}} = {2.2^{20}} = 2.{\left( {{2^{10}}} \right)^2} = {2.1024^2}\) nên \({3.1024^2} > {2.1024^2}\) (do 3 > 2). Do đó \({3.1024^2} > {2^{21}}\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|