Giải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạoTrong không gian \(Oxyz\) (đơn vị trên các trục toạ độ là mét), một ngọn hải đăng có bóng đèn đặt tại điểm \(I\left( {20;40;60} \right)\). a) Cho biết bán kính phủ sáng của đèn trên hải đăng là 3 km, viết phương trình mặt cầu biểu diễn ranh giới của vùng phủ sáng của hải đăng trong không gian. b) Một người đi biển đang ở vị trí \(M\left( {420;340;0} \right)\). Người đó có thể nhìn thấy được ánh sáng của hải đăng hay không? Giải thích. Đề bài Trong không gian \(Oxyz\) (đơn vị trên các trục toạ độ là mét), một ngọn hải đăng có bóng đèn đặt tại điểm \(I\left( {20;40;60} \right)\). a) Cho biết bán kính phủ sáng của đèn trên hải đăng là 3 km, viết phương trình mặt cầu biểu diễn ranh giới của vùng phủ sáng của hải đăng trong không gian. b) Một người đi biển đang ở vị trí \(M\left( {420;340;0} \right)\). Người đó có thể nhìn thấy được ánh sáng của hải đăng hay không? Giải thích. Phương pháp giải - Xem chi tiết ‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\). ‒ Kiểm tra điểm \(M\) nằm trong hoặc nằm trên đường tròn thì người đó có thể nhìn thấy được ánh sáng của hải đăng. Lời giải chi tiết a) Phương trình của mặt cầu tâm \(I\left( {20;40;60} \right)\) và bán kính \(R = 3000\left( m \right)\) là: \({\left( {x - 20} \right)^2} + {\left( {y - 40} \right)^2} + {\left( {z - 60} \right)^2} = {3000^2}\) hay \({\left( {x - 20} \right)^2} + {\left( {y - 40} \right)^2} + {\left( {z - 60} \right)^2} = 9000000\). b) Ta có: \(IM = \sqrt {{{\left( {420 - 20} \right)}^2} + {{\left( {340 - 40} \right)}^2} + {{\left( {0 - 60} \right)}^2}} = 20\sqrt {634} < R\). Vậy \(M\) nằm trong mặt cầu \(\left( S \right)\). Do đó người đó có thể nhìn thấy được ánh sáng của hải đăng.
|