Giải bài 6 trang118 vở thực hành Toán 9 tập 2Tính thể tích của hình tạo thành khi cho hình ABCD quay quanh AD một vòng. Tổng hợp Đề thi vào 10 có đáp án và lời giải Toán - Văn - Anh Đề bài Tính thể tích của hình tạo thành khi cho hình ABCD quay quanh AD một vòng. Phương pháp giải - Xem chi tiết Thể tích của hình nón bán kính r và chiều cao h là: \(V = \frac{1}{3}\pi {r^2}h\). Lời giải chi tiết Hình tạo thành là hai hình nón. Hình nón 1 có: \({R_1} = 8{\rm{\;cm}},{h_1} = 6{\rm{\;cm}}\); hình nón 2 có: \({R_2} = 4{\rm{\;cm}},{h_2} = 3{\rm{\;cm}}\). Thể tích của hình nón 1 là: \({V_1} = \frac{1}{3}\pi R_1^2{h_1} = \frac{1}{3}\pi \cdot {8^2} \cdot 6 = 128\pi \;\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\). Thể tích của hình nón 2 là: \({V_2} = \frac{1}{3}\pi {R_2}{\;^2}{h_2} = \frac{1}{3}\pi \cdot {4^2} \cdot 3 = 16\pi \;\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\). Thể tích hình tạo thành là: \(V = {V_1} + {V_2} = 128\pi + 16\pi = 144\pi \,\,\;\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|