Giải bài 65 trang 69 sách bài tập toán 12 - Cánh diềuTrong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):x + 4y - 2z + 2 = 0,left( {{P_2}} right): - 2x + y + z + 3 = 0). a) Vectơ (overrightarrow {{n_1}} = left( {1;4; - 2} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ (overrightarrow {{n_2}} = left( {2;1;1} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_2}} right)). c) (overrightarrow {{n_1}} .overrightarrow {{n_2}} Đề bài Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 4y - 2z + 2 = 0,\left( {{P_2}} \right): - 2x + y + z + 3 = 0\). a) Vectơ \(\overrightarrow {{n_1}} = \left( {1;4; - 2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\). b) Vectơ \(\overrightarrow {{n_2}} = \left( {2;1;1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\). c) \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\). d) Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) vuông góc với nhau. Phương pháp giải - Xem chi tiết Mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\) nhận \(\overrightarrow n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến. Lời giải chi tiết Mặt phẳng \(\left( {{P_1}} \right):x + 4y - 2z + 2 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1;4; - 2} \right)\). Vậy a) đúng. Mặt phẳng \(\left( {{P_2}} \right): - 2x + y + z + 3 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( { - 2;1;1} \right) \ne \left( {2;1;1} \right)\). Vậy b) sai. \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.\left( { - 2} \right) + 4.1 + \left( { - 2} \right).1 = 0\). Vậy c) đúng. Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\) nên \(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \). Do đó hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) vuông góc với nhau. Vậy d) đúng. a) Đ. b) S. c) Đ. d) Đ.
|