Giải bài 7 trang 49 sách bài tập toán 12 - Kết nối tri thức

Phát biểu nào sau đây là sai? A. (int {dx} = x + C). B. (int {{x^3}dx} = frac{{{x^4}}}{4} + C). C. (int {frac{1}{x}dx} = ln x + C) . D. (int {{e^x}dx} = {e^x} + C).

Đề bài

Phát biểu nào sau đây là sai?

A. \(\int {dx}  = x + C\).

B. \(\int {{x^3}dx}  = \frac{{{x^4}}}{4} + C\).

C. \(\int {\frac{1}{x}dx}  = \ln x + C\).

D. \(\int {{e^x}dx}  = {e^x} + C\).

Phương pháp giải - Xem chi tiết

Sử dụng bảng công thức nguyên hàm cơ bản.

Lời giải chi tiết

Ta có \(\int {\frac{1}{x}dx}  = \ln \left| x \right| + C\).

Đáp án C.

  • Giải bài 8 trang 49 sách bài tập toán 12 - Kết nối tri thức

    Nguyên hàm (Fleft( x right)) của hàm số (fleft( x right) = 4{x^3} + 2x - 1) thỏa mãn (Fleft( 1 right) = 10) là A. (Fleft( x right) = {x^4} + {x^2} - 1). B. (Fleft( x right) = {x^4} - {x^2} + 10). C. (Fleft( x right) = {x^4} + {x^2} - x + 9) . D. (Fleft( x right) = {x^4} + {x^2} - x + 10).

  • Giải bài 9 trang 49 sách bài tập toán 12 - Kết nối tri thức

    Cho (intlimits_0^4 {fleft( x right)dx} = 5) và (intlimits_0^4 {gleft( x right)dx} = 6). Giá trị của (intlimits_0^4 {left[ {fleft( x right) + 2gleft( x right)} right]dx} ) là A. 17. B. 16. C. 11 . D. 22.

  • Giải bài 10 trang 49 sách bài tập toán 12 - Kết nối tri thức

    Tích phân (pi intlimits_1^3 {{{left( {x - 1} right)}^2}dx} ) dùng để tính một trong các đại lượng sau, đó là các đại lượng nào? A. Diện tích hình phẳng giới hạn bởi các đường: (y = {left( {x - 1} right)^2},{rm{ }}y = 0,{rm{ }}x = 1,{rm{ }}x = 3). B. Thể tích khối tròn xoay hình thành khi quay hình phẳng giới hạn bởi các đường: (y = x - 1,{rm{ }}y = 0,{rm{ }}x = 1,{rm{ }}x = 3) quay quanh trục Ox. C. Diện tích hình phẳng giới hạn bở

  • Giải bài 11 trang 50 sách bài tập toán 12 - Kết nối tri thức

    Diện tích hình phẳng giới hạn bởi đồ thị các hàm số (y = {x^2} + 2,{rm{ }}y = 3x) và các đường thẳng (x = 1,{rm{ }}x = 2) là A. (frac{1}{4}). B. (frac{1}{6}). C. (frac{1}{3}). D. (frac{1}{5}).

  • Giải bài 12 trang 50 sách bài tập toán 12 - Kết nối tri thức

    Cho hình chóp (S.ABC) có (SA) vuông góc với mặt phẳng (left( {ABC} right)) và tam giác (ABC) vuông cân tại (B), biết (SA = AB = BC = a). Gọi (M) là trung điểm của cạnh (AC). Tích vô hướng (overrightarrow {SM} cdot overrightarrow {BC} )bằng A. (frac{{{a^2}}}{2}). B. ({a^2}). C. ( - {a^2}). D. ( - frac{{{a^2}}}{2}).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close