Giải bài 8 trang 127 vở thực hành Toán 9 tập 2

Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng (200c{m^3}). Tính thể tích của cả chiếc kem.

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Đề bài

Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng \(200c{m^3}\). Tính thể tích của cả chiếc kem.

Phương pháp giải - Xem chi tiết

+ Ta có \({V_1} = \frac{1}{2}.\frac{4}{3}\pi {R^3} = 200\left( {c{m^3}} \right)\), từ đó tính được R.

+ Tính thể tích của phần kem phía dưới.

+ Thể tích chiếc kem bằng tổng thể tích phía trên và phía dưới chiếc kem.

Lời giải chi tiết

Thể tích phần kem phía trên là \(200c{m^3}\) nên:

\({V_1} = \frac{1}{2}.\frac{4}{3}\pi {R^3} = 200\left( {c{m^3}} \right)\),

suy ra \(R = \sqrt[3]{{\frac{{300}}{\pi }}}cm\).

Thể tích phần kem phía dưới là:

\({V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {R^2}.2R \\= \frac{2}{3}\pi {R^3} = \frac{2}{3}\pi .\frac{{300}}{\pi } = 200\left( {c{m^3}} \right).\)

Thể tích cả chiếc kem là: \(200 + 200 = 400\left( {c{m^3}} \right)\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close