Giải Bài 8 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạoỞ Hình 1, cho biết AE = AF và. Đề bài Ở Hình 1, cho biết AE = AF và \(\widehat {ABC} = \widehat {ACB}\). Chứng minh AH là đường trung trực của BC. Video hướng dẫn giải Phương pháp giải - Xem chi tiết Ta chứng minh A và H cùng thuộc đường trung trực của đoạn BC thông qua chứng minh chúng cách đều 2 đầu mút của đoạn BC. Lời giải chi tiết Theo giả thiết ta có tam giác ABC cân tại A do có 2 góc đáy bằng nhau \( \Rightarrow \)A cách đều 2 đều B, C \( \Rightarrow \) A thuộc trung trực đoạn thẳng BC (1) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng) Xét \(\Delta \)AEC và \(\Delta \)AFB ta có : AE = AF Góc A chung AC = AB \( \Rightarrow \Delta AEC = \Delta AFB\)(c-g-c) \( \Rightarrow \widehat {ECA} = \widehat {FBA}\)(góc tương ứng) Ta có: \(\widehat {ABC} = \widehat {ABF} + \widehat {FBC}\) \(\widehat {ACB} = \widehat {ACE} + \widehat {ECB}\) Mà \(\widehat {ACB} = \widehat {ABC}\)(giả thiết) và \(\widehat {ECA} = \widehat {FBA}\)(chứng minh trên) \( \Rightarrow \widehat {ECB} = \widehat {FBC}\)\( \Rightarrow \)\(\Delta \)HBC cân tại H do có 2 góc đáy bằng nhau \( \Rightarrow \) H cách đều BC \( \Rightarrow \) H thuộc trung trực BC (2) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng) Từ (1) và (2) \( \Rightarrow \) AH là trung trực của BC
|