Giải bài 9 trang 106 vở thực hành Toán 8 tập 2

Cho tam giác ABC có đường cao AH. Biết AH = 12cm, CH = 9cm, BH = 16cm. Lấy M, N lần lượt là trung điểm của AH, BH

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác ABC có đường cao AH. Biết AH = 12cm, CH = 9cm, BH = 16cm. Lấy M, N lần lượt là trung điểm của AH, BH

a) Chứng minh rằng ABC là tam giác vuông tại A

b) Chứng minh rằng MN  AC và CM  AN

c) Tính diện tích tam giác AMN 

Phương pháp giải - Xem chi tiết

Áp dụng định lí Pythagore, Pythagore đảo.

Lời giải chi tiết

a) Áp dụng định lí Pythagore cho tam giác AHC vuông tại H, ta có:

AC2 = AH2 + CH2 = 225, hay AC = 15 cm.

Áp dụng định lí Pythagore cho tam giác AHB vuông tại H, ta có:

AB2 = AH2 + BH2 = 400, hay AB = 20 cm.

Mặt khác BC = BH + CH = 25 cm. Do đó BC2 = AB2 + AC2. Vì vậy, theo định lí Pythagore đảo thì tam giác ABC vuông tại A.

b) Do MN // AB và AB AC nên MN AC.

ΔACN có: AH CN (theo giả thiết), MN AC (chứng minh trên). Vậy M là trực tâm của ΔACN, do đó CM AN.

c) Ta có SAMN=AM.HN2=AH.HB8=24(cm2).

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close