Giải bài 9 trang 9 sách bài tập toán 10 - Chân trời sáng tạoXét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau: Đề bài Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau: a) \(\exists x \in \mathbb{N},2{x^2} + x = 1\) b) \(\forall x \in \mathbb{R},{x^2} + 5 > 4x\) Phương pháp giải - Xem chi tiết Bước 1: Giải phương trình và bất phương trình đã cho Bước 2: Kết luận tính đúng sai và viết mệnh đề phủ định Lời giải chi tiết a) Giải phương trình \(2{x^2} + x = 1\) \(\begin{array}{l} \Leftrightarrow 2{x^2} + x - 1 = 0\\ \Leftrightarrow \left( {2x - 1} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x = - 1\end{array} \right.\end{array}\) Vậy mệnh đề \(\exists x \in \mathbb{N},2{x^2} + x = 1\) đúng Mệnh đề phủ định: \(\forall x \in \mathbb{N},2{x^2} + x \ne 1\) b) Giải bất phương trình \({x^2} + 5 > 4x\) \(\begin{array}{l}{x^2} + 5 > 4x \Leftrightarrow {x^2} + 5 - 4x > 0\\ \Leftrightarrow {x^2} - 4x + 4 + 1 = {\left( {x - 2} \right)^2} + 1 \ge 1\\ \Rightarrow {x^2} + 5 > 4x\end{array}\) Vậy mệnh đề \(\forall x \in \mathbb{R},{x^2} + 5 > 4x\) đúng Mệnh đề phủ định: \(\exists x \in \mathbb{R},{x^2} + 5 < 4x\)
|