Giải bài 9.7 trang 86 SGK Toán 10 – Kết nối tri thức

Một hộp đựng các tấm thẻ đánh số 10, 11,...; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ.

Đề bài

Một hộp đựng các tấm thẻ đánh số 10, 11,...; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ.

Tính xác suất của các biến cố sau:

a) C: “Cả hai thẻ rút được đều mang số lẻ”;

b) D: “Cả hai thẻ rút được đều mang số chẵn”.

Phương pháp giải - Xem chi tiết

\(n\left( \Omega  \right)\) là số cách chọn 2 phần tử từ tập \(\left\{ {10;11;...;20} \right\}\). Suy ra \(n\left( C \right)\) là số cách chọn 2 phần tử từ tập \(\left\{ {11;13;...;19} \right\}\) và \(n\left( D \right)\) là số cách chọn 2 phần tử từ tập \(\left\{ {10;12;...;20} \right\}\).

Lời giải chi tiết

Ta có \(n\left( \Omega  \right) = C_{11}^2 = 55\).

a) Có 5 số lẻ là \(\left\{ {11;13;15;17;19} \right\}\) nên \(n\left( C \right) = C_5^2 = 10\). Vậy \(P\left( C \right) = \frac{{10}}{{55}} = \frac{2}{{11}}\).

b) Có 6 số chẵn là \(\left\{ {10;12;14;16;18;20} \right\}\) nên \(n\left( D \right) = C_6^2 = 15\). Vậy \(P\left( D \right) = \frac{{15}}{{55}} = \frac{3}{{11}}\).

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close