Giải bài tập 2 trang 117 SGK Toán 9 tập 1 - Cánh diềuCho đường tròn (left( {O;R} right)) và dây (AB) sao cho (widehat {AOB} = 90^circ ). Giả sử (M,N) lần lượt là các điểm thuộc cung lớn (AB) và cung nhỏ (AB) ((M,N) khác (A) và (B)). a) Tính độ dài đoạn thẳng (AB) theo (R). b) Tính số đo các góc (ANB) và (AMB). Đề bài Cho đường tròn \(\left( {O;R} \right)\) và dây \(AB\) sao cho \(\widehat {AOB} = 90^\circ \). Giả sử \(M,N\) lần lượt là các điểm thuộc cung lớn \(AB\) và cung nhỏ \(AB\) (\(M,N\) khác \(A\) và \(B\)). a) Tính độ dài đoạn thẳng \(AB\) theo \(R\). b) Tính số đo các góc \(ANB\) và \(AMB\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Dựa vào tính chất góc ở tâm và góc nội tiếp để tính. Lời giải chi tiết
\(O{A^2} + O{B^2} = A{B^2} \Rightarrow A{B^2} = {R^2} + {R^2} = 2{R^2} \Rightarrow AB = R \sqrt 2\) b) Xét đường tròn \(\left( O \right)\): +) Vì M thuộc cung lớn AB nên \(\widehat {AMB}\) là góc nội tiếp và \(\widehat {AOB}\) là góc ở tâm cùng chắn cung nhỏ \(AB\) nên: \(\widehat {AMB} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.90^\circ = 45^\circ \). +) Số đo cung lớn AB là: $sđ\overset\frown{AB}\; lớn=360{}^\circ - sđ\overset\frown{AB }\; nhỏ=360{}^\circ -90{}^\circ =270{}^\circ $ +) Vì N thuộc cung nhỏ AB nên \(\widehat {ANB}\) là góc nội tiếp chắn cung lớn \(AB\) nên: $\widehat{ANB}=\frac{1}{2}sđ\overset\frown{AB }\; lớn=\frac{1}{2}.270{}^\circ =135{}^\circ $. Vậy \(\widehat {AMB} = 45^\circ ,\widehat {ANB} = 135^\circ \).
|