Giải bài tập 2 trang 82 SGK Toán 9 tập 1 - Chân trời sáng tạo

Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Đề bài

Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Đọc kĩ dữ liệu đề bài để vẽ hình

- Áp dụng khoảng cách từ tâm đến đường tròn để chứng minh 4 điểm thuộc đường tròn

- Bán kính đường tròn bằng nửa đường chéo hình chữ nhật.

Lời giải chi tiết

Ta có ABCD là hình chữ nhật và gọi O là giao của hai đường chéo AC và BD.

Nên ta có OA = OB = OC = OD suy ra bốn điểm A, B, C, D cùng thuộc đường tròn tâm O, bán kính OA.

Áp dụng định lí Pythagore vào tam giác vuông ACD, ta có:

AC=AD2+CD2=182+122=613

Suy ra R = OA = AC2=6132=313cm.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close