Giải bài tập 3 trang 81 SGK Toán 9 tập 1 - Cánh diềuCho tam giác (MNP) có (MN = 5cm,MP = 12cm,NP = 13cm). Chứng minh tam giác (MNP) vuông tại (N). Từ đó, tính các tỉ số lượng giác của góc (N). Đề bài Cho tam giác \(MNP\) có \(MN = 5cm,MP = 12cm,NP = 13cm\). Chứng minh tam giác \(MNP\) vuông tại \(N\). Từ đó, tính các tỉ số lượng giác của góc \(N\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng định lý Pythagore đảo để chứng minh tam giác \(MNP\) vuông tại \(N\). Dựa vào định nghĩa tỉ số lượng giác để giải bài toán. Lời giải chi tiết
Xét tam giác \(MNP\) có: \(M{N^2} + M{P^2} = {5^2} + {12^2} = 169\). \(N{P^2} = {13^2} = 169\). \( \Rightarrow \Delta MNP\) vuông tại \(M\) (Định lý Pythagore đảo). \(\sin N = \frac{{MP}}{{NP}} = \frac{{12}}{{13}}\). \(\cos N = \frac{{MN}}{{NP}} = \frac{5}{{13}}\). \(\tan N = \frac{{MP}}{{MN}} = \frac{{12}}{5}\). \(\cot N = \frac{{MN}}{{MP}} = \frac{5}{{12}}\).
|