Giải bài tập 3 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo

Giải các phương trình: a) (frac{{x + 5}}{{x - 3}} + 2 = frac{2}{{x - 3}}); b) (frac{{3x + 5}}{{x + 1}} + frac{2}{x} = 3); c) (frac{{x + 3}}{{x - 2}} + frac{{x + 2}}{{x - 3}} = 2); d) (frac{{x + 2}}{{x - 2}} - frac{{x - 2}}{{x + 2}} = frac{{16}}{{{x^2} - 4}}).

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Đề bài

Giải các phương trình:

a) x+5x3+2=2x3;

b) 3x+5x+1+2x=3;

c) x+3x2+x+2x3=2;

d) x+2x2x2x+2=16x24.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Để giải phương trình chứa ẩn ở mẫu, ta làm như sau:

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Xét mỗi giá trị tìm được ở Bước 3, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.

Lời giải chi tiết

a) x+5x3+2=2x3

Điều kiện xác định: x3.

Ta có:

x+5x3+2=2x3x+5x3+2(x3)x3=2x3x+5+2x6=23x=3x=1

Ta thấy x=1 thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là x=1.

b) 3x+5x+1+2x=3

Điều kiện xác định: x0x1.

Ta có:

3x+5x+1+2x=3(3x+5)x(x+1)x+2(x+1)(x+1)x=3x(x+1)(x+1)x3x2+5x+2x+2=3x2+3x4x=2x=12

Ta thấy x=12 thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là x=12.

c) x+3x2+x+2x3=2

Điều kiện xác định: x2x3.

Ta có:

x+3x2+x+2x3=2(x+3)(x3)(x2)(x3)+(x+2)(x2)(x2)(x3)=2(x2)(x3)(x2)(x3)x29+x24=2x210x+1210x=25x=52

Ta thấy x=52 thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là x=52.

d) x+2x2x2x+2=16x24

Ta có x24=(x2)(x+2) nên điều kiện xác định là x±2.

Ta có:

x+2x2x2x+2=16x24x+2x2x2x+2=16(x2)(x+2)(x+2)2(x2)(x+2)(x2)2(x2)(x+2)=16(x2)(x+2)(x+2x+2)(x+2+x2)=164.2x=16x=2

Ta thấy x=2 không thỏa mãn điều kiện xác định.

Vậy phương trình vô nghiệm.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close