Giải mục 2 trang 102 SGK Toán 8 tập 1 - Cánh diềuCho hình thang cân ABCD có AB // CD , AB < CD, E là giao điểm của AD và BC (Hình 25) a) So sánh các cặp góc: (widehat {E{rm{D}}C}) và (widehat {EC{rm{D}}}); (widehat {E{rm{A}}B}) và (widehat {EBA}). b) So sánh các cặp đoạn thẳng: EA và EB, ED và EC. Từ đó, hãy so sánh AD và BC. c) Hai tam giác ADC và BCD có bằng nhau hay không? Từ đó, hãy so sánh AC và BD
Lựa chọn câu để xem lời giải nhanh hơn
HĐ3 Video hướng dẫn giải Cho hình thang cân ABCD có AB // CD , AB < CD, E là giao điểm của AD và BC (Hình 25)
a) So sánh các cặp góc: \(\widehat {E{\rm{D}}C}\) và \(\widehat {EC{\rm{D}}}\); \(\widehat {E{\rm{A}}B}\) và \(\widehat {EBA}\). b) So sánh các cặp đoạn thẳng: EA và EB, ED và EC. Từ đó, hãy so sánh AD và BC. c) Hai tam giác ADC và BCD có bằng nhau hay không? Từ đó, hãy so sánh AC và BD Phương pháp giải: Quan sát hình 25. Lời giải chi tiết: a, Do ABCD là hình thang cân nên. \(\widehat {ADC} = \widehat {BCD}\)hay \(\widehat {EDC} = \widehat {ECD}\) Do ABCD là hình thang cân nên \(\widehat {BAD} = \widehat {ABC}\left( 1 \right)\) Mà: \(\begin{array}{l}\widehat {BAD} + \widehat {EAB} = {180^0}\\\widehat {ABC} + \widehat {EBA} = {180^0}\end{array}\) Suy ra: \(\begin{array}{l}\widehat {BAD} + \widehat {EAB} = \widehat {ABC} + \widehat {EBC}\\ \Rightarrow \widehat {EAB} = \widehat {EBA}\end{array}\)(do(1)) b, Do \(\widehat {EAB} = \widehat {EBA}\) suy ra \(\Delta EAB\)cân tại E nên EA = EB Do \(\widehat {EDC} = \widehat {ECD}\) suy ra \(\Delta ECD\)cân tại E nên ED = EC Mà: ED = EC Suy ra EA + AD = EB + BC Suy ra AD = BC (do EA = EB) c, Xét \(\Delta ADC\) và \(\Delta BCD\) có: AD = BC \(\widehat {ADC} = \widehat {BCD}\) DC chung Suy ra: \(\Delta ADC = \Delta BCD(c.g.c) \Rightarrow AC = BD\) LT1 Video hướng dẫn giải Cho hình thang cân, ABCD có AB //CD. Chứng minh \(\widehat {A{\rm{DB}}} = \widehat {BCA}\) Phương pháp giải: Chứng minh \(\Delta ADB = \Delta BCA(c.g.c)\) Lời giải chi tiết: Do tứ giác ABCD là hình thang cân nên AD = BC. AC = BD. Xét \(\Delta ADB\) và \(\Delta BCA\) có: AB chung, AD = BC, AC = BD \(\Rightarrow \Delta ADB=\Delta BCA\) (c.c.c)
|