Giải mục 4 trang 32 SGK Toán 8 tập 1 - Kết nối tri thứcVới hai số a, b bất kì, viết (a - b = a + left( { - b} right)) và áp dụng hằng đẳng thức bình phương của một tổng để tính ({left( {a - b} right)^2}). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn
Lựa chọn câu để xem lời giải nhanh hơn
HĐ4 Video hướng dẫn giải Với hai số a, b bất kì, viết a−b=a+(−b)a−b=a+(−b) và áp dụng hằng đẳng thức bình phương của một tổng để tính (a−b)2(a−b)2. Phương pháp giải: Sử dụng hằng đẳng thức (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2 Lời giải chi tiết: (a−b)2=[a+(−b)]2=a2+2.a.(−b)+(−b)2=a2−2.ab+b2(a−b)2=[a+(−b)]2=a2+2.a.(−b)+(−b)2=a2−2.ab+b2 Luyện tập 4 Video hướng dẫn giải Khai triển (3x−2y)2(3x−2y)2 Phương pháp giải: Sử dụng hằng đẳng thức (A−B)2=A2−2AB+B2(A−B)2=A2−2AB+B2 Lời giải chi tiết: (3x−2y)2=(3x)2−2.3x.2y+(2y)2=9x2−12xy+4y2(3x−2y)2=(3x)2−2.3x.2y+(2y)2=9x2−12xy+4y2 Vận dụng Video hướng dẫn giải Trong trò chơi “Ai thông minh hơn học sinh lớp 8”, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả của phép tính 1002210022. Chỉ vài giây sau, Nam đã tính ra kết quả chính xác và giành được điểm. Em hãy giải thích xem Nam đã tính nhanh như thế nào. Phương pháp giải: Sử dụng hằng đẳng thức (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2 Lời giải chi tiết: 10022=(1000+2)2=10002+2.1000.2+22=1000000+4000+4=100400410022=(1000+2)2=10002+2.1000.2+22=1000000+4000+4=1004004.
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|