Lý thuyết Đạo hàm - SGK Toán 11 Cùng khám pháA. Lý thuyết 1. Đạo hàm của hàm số tại một điểm A. Lý thuyết 1. Đạo hàm của hàm số tại một điểm
Nhận xét: - Nếu một chất điểm chuyển động thẳng với phương trình s = s(t) thì vận tốc tức thời của nó tại thời điểm \({t_0}\) bằng đạo hàm của hàm số s = s(t) tại \({t_0}\), tức là: \(v({t_0}) = s'({t_0})\). - Nếu nhiệt độ của một vật thay đổi theo thời gian bởi hàm số y = f(x) thì tốc độ thay đổi nhiệt độ của vật đó tại thời điểm \({t_0}\) bằng đạo hàm của hàm số y = f(x) tại \({t_0}\). 2. Ý nghĩa hình học của đạo hàm và bài toán tiếp tuyến a) Tiếp tuyến của đường cong Trên mặt phẳng tọa độ Oxy, cho đường cong (C). Vị trí giới hạn (nếu có) của cát tuyến PQ khi điểm Q dần tiến về điểm P được gọi là tiếp tuyến với (C) tại P. Điểm P còn được gọi là tiếp điểm. b) Ý nghĩa hình học của đạo hàm Đạo hàm của hàm số y = f(x) tại điểm \({x_0}\) bằng hệ số góc của tiếp tuyến với đồ thị hàm số đó tại điểm \(M({x_0};f({x_0}))\). c) Phương trình tiếp tuyến của đường cong
3. Đạo hàm của hàm số trên một khoảng
B. Bài tập Bài 1: Tính đọa hàm của hàm số \(f(x) = {x^3}\) tại điểm \({x_0} = 1\). Giải: Ta có \(f'(1) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - {1^3}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)({x^2} + x + 1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} ({x^2} + x + 1) = 3\). Bài 2: Tìm hệ số góc của tiếp tuyến với đồ thị hàm số \(f(x) = 2{x^2}\) tại điểm có hoành độ \({x_0} = 1\). Viết phương trình tiếp tuyến đó. Giải: Ta có \(f'(1) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{2(x + 1)(x - 1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} 2(x + 1) = 4\). Suy ra f’(1) = 4. Do đó hệ số góc của tiếp tuyến bằng 4. Tiếp tuyến với đồ thị hàm số \(f(x) = 2{x^2}\) tại điểm có hoành độ \({x_0} = 1\) là: \(f(x) = f'(1)(x - 1) + f(1)\) hay \(y = 4(x - 1) + 2\) hay \(y = 4x - 2\). Bài 4: Tìm đạo hàm của hàm số \(y = {x^2} + x\) trên \(\mathbb{R}\). Giải: Với mọi \({x_0} \in \mathbb{R}\), ta có: \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} + x - {x_0}^2 + {x_0}}}{{x - {x_0}}}\) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{(x - {x_0})(x + {x_0}) + (x - {x_0})}}{{x - {x_0}}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{x + {x_0} + 1}}{{x - {x_0}}} = 2{x_0} + 1\).
|