Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức

1. Phương trình tích Cách giải phương trình tích

1. Phương trình tích

Cách giải phương trình tích

Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\). Sau đó lấy tất cả các nghiệm của chúng.

Ví dụ: Giải phương trình \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)

Lời giải:

Ta có: \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)

nên \(2x + 1 = 0\) hoặc \(3x - 1 = 0\).

\(2x + 1 = 0\) hay \(2x =  - 1\), suy ra \(x =  - \frac{1}{2}\).

\(3x - 1 = 0\) hay \(3x = 1\), suy ra \(x = \frac{1}{3}\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - \frac{1}{2}\) và \(x = \frac{1}{3}\).

Các bước giải phương trình:

Bước 1. Đưa phương trình về phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\).

Bước 2. Giải phương trình tích tìm được.

Ví dụ: Giải phương trình \({x^2} - x =  - 2x + 2\).

Lời giải:

Biến đổi phương trình đã cho về phương trình tích như sau:

\(\begin{array}{l}{x^2} - x =  - 2x + 2\\{x^2} - x + 2x - 2 = 0\\x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\\\left( {x + 2} \right)\left( {x - 1} \right) = 0.\end{array}\)

Ta giải hai phương trình sau:

\(x + 2 = 0\) suy ra \(x =  - 2\).

\(x - 1 = 0\) suy ra \(x = 1\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - 2\) và \(x = 1\).

2. Phương trình chứa ẩn ở mẫu

Điều kiện xác định của phương trình chứa ẩn ở mẫu

Đối với phương trình chứa ẩn ở mẫu, ta thường đặt điều kiện cho ẩn để tất cả các mẫu thức trong phương trình đều khác 0 và gọi đó là điều kiện xác định (viết tắt là ĐKXĐ) của phương trình.

Ví dụ:

- Phương trình \(\frac{{5x + 2}}{{x - 1}} = 0\) có điều kiện xác định là \(x \ne 1\) vì \(x - 1 \ne 0\) khi \(x \ne 1\).

- Phương trình \(\frac{1}{{x + 1}} = 1 + \frac{1}{{x - 2}}\) có điều kiện xác định là \(x \ne  - 1\) và \(x \ne 2\) vì \(x + 1 \ne 0\) khi \(x \ne  - 1\), \(x - 2 \ne 0\) khi \(x \ne 2\).

Các bước giải phương trình chứa ẩn ở mẫu

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Ví dụ: Giải phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

Lời giải:

Điều kiện xác định \(x \ne  - 1\) và \(x \ne 2\).

Quy đồng mẫu và khử mẫu, ta được \(\frac{{2\left( {x - 2} \right) + \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\), suy ra \(2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\).

Giải phương trình \(2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\):

\(\begin{array}{l}2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\\2x - 4 + x + 1 = 3\\3x - 3 = 3\\3x = 6\\x = 2\end{array}\)

Giá trị \(x = 2\) không thỏa mãn ĐKXĐ.

Vậy phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\) vô nghiệm.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close