Bài 11 trang 124 SGK Hình học 12 Nâng cao

Trong không gian Oxyz, cho đường thẳng có phương trình trong đó a, b, c thay đổi sao cho a) Chứng minh rằng đường thẳng đi qua một điểm cố định, góc giữa và Oz là không đổi. b) Tìm quỹ tích các giao điểm của và mp(Oxy).

Lựa chọn câu để xem lời giải nhanh hơn

Trong không gian Oxyz, cho đường thẳng \(\Delta \) có phương trình 

\(\left\{ \matrix{
x = 1 + at \hfill \cr 
y = 1 + bt \hfill \cr 
z = 5 + ct \hfill \cr} \right.\) trong đó a, b, c thay đổi sao cho \({c^2} = {a^2} + {b^2}.\)

LG a

Chứng minh rằng đường thẳng \(\Delta \) đi qua một điểm cố định, góc giữa \(\Delta \) và Oz là không đổi.

Lời giải chi tiết:

\(\Delta \) đi qua điểm A(1; 1; 5) cố định.
\(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {a,b,c} \right).\)
Gọi \(\varphi \) là góc giữa \(\Delta \) và trục Oz.

Ta có:
\(\cos \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow k } \right)} \right| = \left| {{c \over {\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|  \) \( = \left| {{c \over {c\sqrt 2 }}} \right|= {{\sqrt 2 } \over 2}.\)
Suy ra \(\varphi  = {45^0}.\)

LG b

Tìm quỹ tích các giao điểm của \(\Delta \) và mp(Oxy).

Lời giải chi tiết:

Vì \({c^2} = {a^2} + {b^2}\) nên \(c \ne 0\) (vì nếu c = 0 thì a = b = 0).
Gọi M(x, y, z) là giao điểm của \(\Delta \) và mp(Oxy) thì (x, y, z) thỏa mãn hệ phương trình:

\(\left\{ \matrix{
x = 1 + at \hfill \cr 
y = 1 + bt \hfill \cr 
z = 5 + ct \hfill \cr 
z = 0 \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x - 1 = at \hfill \cr 
y - 1 = bt \hfill \cr 
t = - {5 \over c} \hfill \cr 
z = 0 \hfill \cr} \right..\)

Từ đó suy ra \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \left( {{a^2} + {b^2}} \right).{{25} \over {{c^2}}} = 25\) và z = 0.
Vậy quỹ tích điểm M là đường tròn tâm I(1; 1; 0) bán kính bằng 5 và nằm trong mp(Oxy).

HocTot.XYZ

  • Bài 12 trang 124 SGK Hình học 12 Nâng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c. a) Tính khoảng cách từ điểm A tới mp(A’BD). b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D. c) Tính khoảng cách giữa hai đường thẳng BC’ và CD’.

  • Bài 10 trang 124 SGK Hình học 12 Nâng cao

    Trong không gian tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(2; 0; 1). a) Tìm quỹ tích các điểm M sao cho b) Tìm quỹ tích các điểm N sao cho c) Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy).

  • Bài 9 trang 123 SGK Hình học 12 Nâng cao

    Trong không gian tọa độ Oxyz cho đường thẳng có phương trình a) Viết phương trình hình chiếu của trên các mặt phẳng tọa độ. b) Chứng minh rằng mặt phẳng đi qua đường thẳng . c) Tính khoảng cách giữa đường thẳng và các trục tọa độ. d) Viết phương trình đường vuông góc chung của hai đường thẳng và e) Viết phương trình đường thẳng song song với Oz, cắt cả và ’.

  • Bài 8 trang 123 SGK Hình học 12 Nâng cao

    Trong không gian tọa độ Oxyz cho các điểm A(1; 5; 3), B(4; 2; -5), C(5; 5; -1) và D(1; 2; 4). a) Chứng tỏ rằng bốn điểm A, B, C, D không đồng phẳng. b) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D . Xác định tâm và bán kính của mặt cầu đó. c) Viết phương trình mặt phẳng đi qua A, B, C và tìm khoảng cách từu điểm D tới mặt phẳng đó. d) Viết phương trình mặt phẳng vuông góc với CD và tiếp xúc với mặt cầu (S). e) Tìm bán kính các đường tròn giao tuyến của mặt cầu (S) và các mặt phẳ

  • Bài 7 trang 123 SGK Hình học 12 Nâng cao

    Cho hình trụ có bán kính R và đường cao . Gọi AB và CD là hai đường kính thay đổi của hai đường tròn đáy mà AB vuông góc với CD. a) Chứng minh ABCD là tứ diện đều. b) Chứng minh rằng các đường thẳng AC, AD, BC, BD luôn tiếp xúc với một mặt trụ cố định (tức là khoảng cách giữa mỗi đường thẳng đó và trục của mặt trụ bằng bán kính mặt trụ).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close