-
Câu hỏi mở đầu trang 12
Một ôtô đang chạy với vận tốc 20m/s thì người lái xe đạp phanh. Sau khi đạp phanh, ôtô chuyển động chậm dần đều với vận tốc v(t) = -40t + 20 (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ôtô còn di chuyển được bao nhiêu mét?
Xem chi tiết -
Bài 4.8 trang 18
Sử dụng ý nghĩa hình học của tích phân, tính: a) \(\int\limits_1^2 {\left( {2x + 1} \right)dx} \); b) \(\int\limits_{ - 3}^3 {\sqrt {9 - {x^2}} dx} \).
Xem chi tiết -
Bài 4.9 trang 18
Cho \(\int\limits_0^3 {f\left( x \right)dx = 5} \) và \(\int\limits_0^3 {g\left( x \right)dx = 2} \). Tính: a) \(\int\limits_0^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \); b) \(\int\limits_0^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \); c) \(\int\limits_0^3 {3f\left( x \right)dx} \); d) \(\int\limits_0^3 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Xem chi tiết -
Bài 4.10 trang 18
Tính: a) \(\int\limits_0^3 {{{\left( {3x - 1} \right)}^2}dx} \); b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \sin x} \right)dx} \); c) \(\int\limits_0^1 {\left( {{e^{2x}} + 3{x^2}} \right)dx} \); d) \(\int\limits_{ - 1}^2 {\left| {2x + 1} \right|dx} \).
Xem chi tiết -
Bài 4.11 trang 18
Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s). a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \). b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \).
Xem chi tiết -
Bài 4.12 trang 18
Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hóa bằng công thức \(P'\left( x \right) = - 0,0005x + 12,2\). Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm. a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phẩm. b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm.
Xem chi tiết -
Bài 4.13 trang 18
Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức \(v = k\left( {{R^2} - {r^2}} \right)\), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng \(0 \le r \le R\). So sánh vận tốc trung bình với vận tốc lớn nhất.
Xem chi tiết