Đề bài

Cho điểm \(A\left( { - 3;1;2} \right)\) và điểm \(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\). Toạ độ của điểm \(A'\) là

A. \(\left( {3; - 1; - 2} \right)\).

B. \(\left( {3; - 1;2} \right)\).

C. \(\left( {3;1; - 2} \right)\).

D. \(\left( { - 3; - 1;2} \right)\).

Phương pháp giải

Cho điểm \(M\left( {a;b;c} \right)\). \({M_1},{M_2},{M_3}\) lần lượt là điểm đối xứng của điểm \(M\) qua các trục toạ độ \(Ox,Oy,Oz\) thì \({M_1}\left( {a; - b; - c} \right),{M_2}\left( { - a;b; - c} \right),{M_3}\left( { - a; - b;c} \right)\).

Lời giải của GV HocTot.XYZ

\(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\) thì \(A'\left( {3;1; - 2} \right)\).

Chọn C

Xem thêm : SBT Toán 12 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho \(A\left( {0;2;1} \right),B\left( {3; - 2;1} \right)\) và \(C\left( { - 2;5;7} \right)\).

a) Tính chu vi của tam giác ABC.

b) Tính \(\widehat {BAC}\).

 
Xem lời giải >>
Bài 2 :

 

 

Cho các điểm A(–1; –1; 0), B(0; 3; –1), C(–1; 14; 0), D(–3; 6; 2). Chứng minh rằng ABCD là hình thang.

Xem lời giải >>
Bài 3 :

Cho hình hộp ABCD.A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5). Tìm toạ độ các đỉnh còn lại của hình hộp.

 
Xem lời giải >>
Bài 4 :

Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm

A. \(M\left( {3;0;0} \right)\).

B. \(N\left( {0; - 1;1} \right)\).

C. \(P\left( {0; - 1;0} \right)\).

D. \(Q\left( {0;0;1} \right)\).

Xem lời giải >>
Bài 5 :

Cho điểm \(M\left( { - 3;2; - 1} \right)\) và điểm \(M'\) là điểm đối xứng của \(M\) qua mặt phẳng \(\left( {Oxy} \right)\). Toạ độ của điểm \(M'\) là

A. \(\left( { - 3;2;1} \right)\).

B. \(\left( {3;2;1} \right)\).

C. \(\left( {3;2; - 1} \right)\).

D. \(\left( {3; - 2; - 1} \right)\).

Xem lời giải >>
Bài 6 :

Hình chiếu vuông góc của điểm \(M\left( {2;1; - 1} \right)\) trên trục \(Oz\) có toạ độ là

A. \(\left( {2;1;0} \right)\).

B. \(\left( {0;0; - 1} \right)\).

C. \(\left( {2;0;0} \right)\).

D. \(\left( {0;1;0} \right)\).

Xem lời giải >>